메뉴 건너뛰기




Volumn 15, Issue 1, 1996, Pages 77-92

Importance sampling algorithms for the propagation of probabilities in belief networks

Author keywords

[No Author keywords available]

Indexed keywords

BELIEF NETWORKS; IMPORTANCE SAMPLING; LIKELIHOOD WEIGHTING; LOGICAL SAMPLING;

EID: 0030193416     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/0888-613X(96)00013-8     Document Type: Article
Times cited : (16)

References (22)
  • 1
    • 0344506715 scopus 로고
    • Bayesian network inference using simulation
    • (Kanal, Levitt, and Lemmer, Eds.), North-Holland
    • Chin, H. L., and Cooper, G. F., Bayesian network inference using simulation, in Uncertainty in Artificial Intelligence, 3 (Kanal, Levitt, and Lemmer, Eds.), North-Holland, 129-147, 1989.
    • (1989) Uncertainty in Artificial Intelligence , vol.3 , pp. 129-147
    • Chin, H.L.1    Cooper, G.F.2
  • 2
    • 0003927182 scopus 로고
    • Probabilistic inference using belief networks is NP-hard
    • Stanford Univ., Stanford, Calif.
    • Cooper, G. F., Probabilistic inference using belief networks is NP-hard, Tech. Report KSL-87-27, Stanford Univ., Stanford, Calif., 1988.
    • (1988) Tech. Report KSL-87-27
    • Cooper, G.F.1
  • 3
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using bayesian belief networks is NP-hard
    • Cooper, G. F., The computational complexity of probabilistic inference using bayesian belief networks is NP-hard, Artificial Intelligence 42, 393-405, 1990.
    • (1990) Artificial Intelligence , vol.42 , pp. 393-405
    • Cooper, G.F.1
  • 4
    • 84911264634 scopus 로고
    • Approximating probabilistic inference in bayesian networks is NP-hard
    • Knowledge Systems Lab., Stanford Univ., Stanford, Calif.
    • Dagum, P., and Luby, M., Approximating probabilistic inference in bayesian networks is NP-hard, Report KSL-91-53, Knowledge Systems Lab., Stanford Univ., Stanford, Calif., 1991.
    • (1991) Report KSL-91-53
    • Dagum, P.1    Luby, M.2
  • 5
    • 0006368088 scopus 로고
    • Hybrid propagation in junction trees
    • (B. Bouchon, R. R. Yager, and L. A. Zadeh, Eds.) Springer Verlag, Berlin
    • Dawid, A. P., Kjærulff, U., and Lauritzen, S. L., Hybrid propagation in junction trees, in Advances in Intelligent Computing (B. Bouchon, R. R. Yager, and L. A. Zadeh, Eds.) Springer Verlag, Berlin, 87-97, 1995.
    • (1995) Advances in Intelligent Computing , pp. 87-97
    • Dawid, A.P.1    Kjærulff, U.2    Lauritzen, S.L.3
  • 6
    • 0018984903 scopus 로고
    • An accurate approximation to the sampling distribution of the studentized extreme-valued statistic
    • Fertig, K. W., and Mann, N. R., An accurate approximation to the sampling distribution of the studentized extreme-valued statistic, Technometrics 22, 83-90, 1980.
    • (1980) Technometrics , vol.22 , pp. 83-90
    • Fertig, K.W.1    Mann, N.R.2
  • 7
    • 0007319555 scopus 로고
    • Weighing and integrating evidence for stochastic simulation in bayesian networks
    • (M. Henrion, R. D. Shacter, L. N. Kanal, and J. F. Lemmer, Eds.), North-Holland, Amsterdam
    • Fung, R., and Chang, K. C., Weighing and integrating evidence for stochastic simulation in bayesian networks, in Uncertainty in Artificial Intelligence, 5 (M. Henrion, R. D. Shacter, L. N. Kanal, and J. F. Lemmer, Eds.), North-Holland, Amsterdam, 209-220, 1990.
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 209-220
    • Fung, R.1    Chang, K.C.2
  • 8
    • 0003263179 scopus 로고
    • Propagating uncertainty by logic sampling in Bayes networks
    • (J. F. Lcmmer and L. N. Kanal, Eds.), North-Holland, Amsterdam
    • Henrion, M., Propagating uncertainty by logic sampling in Bayes networks, in Uncertainty in Artificial Intelligence 2 (J. F. Lcmmer and L. N. Kanal, Eds.), North-Holland, Amsterdam, 317-324, 1988.
    • (1988) Uncertainty in Artificial Intelligence , vol.2 , pp. 317-324
    • Henrion, M.1
  • 9
    • 0345701034 scopus 로고
    • An introduction to algorithms for inference in belief nets
    • (M. Henrion, R. D. Shacter, L. N. Kanal, and J. F. Lemmer, Eds.) North-Holland, Amsterdam
    • Henrion, M., An introduction to algorithms for inference in belief nets, in Uncertainty in Artificial Intelligence, 5 (M. Henrion, R. D. Shacter, L. N. Kanal, and J. F. Lemmer, Eds.) North-Holland, Amsterdam, 129-138, 1990.
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 129-138
    • Henrion, M.1
  • 10
    • 0042194578 scopus 로고
    • Blocking Gibbs sampling in very large probabilistic expert systems
    • Inst. for Electronic Systems, Aalborg Univ.
    • Jensen, C. S., Kong, A., and Kjærulff, U., Blocking Gibbs sampling in very large probabilistic expert systems, Tech. Report R-93-2031, Inst. for Electronic Systems, Aalborg Univ., 1993.
    • (1993) Tech. Report R-93-2031
    • Jensen, C.S.1    Kong, A.2    Kjærulff, U.3
  • 11
    • 0020918216 scopus 로고
    • A computational model for causal and diagnostic reasoning in inference engines
    • Karlsruhe, Germany
    • Kim, J. H., and Pearl, J., A computational model for causal and diagnostic reasoning in inference engines, Proceedings IJCAI-83, Karlsruhe, Germany, 190-193, 1983.
    • (1983) Proceedings IJCAI-83 , pp. 190-193
    • Kim, J.H.1    Pearl, J.2
  • 13
    • 0001006209 scopus 로고
    • Local computation with probabilities on graphical structures and their application to expert systems
    • Lauritzen, S. L., and Spiegelharter, D. J., Local computation with probabilities on graphical structures and their application to expert systems, J. Roy. Statist. Soc. Ser. B 50, 157-224, 1988.
    • (1988) J. Roy. Statist. Soc. Ser. B , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelharter, D.J.2
  • 14
    • 0023347981 scopus 로고
    • Evidential reasoning using stochastic simulation of causal models
    • Pearl, J., Evidential reasoning using stochastic simulation of causal models, Artificial Intelligence 32, 247-257, 1987.
    • (1987) Artificial Intelligence , vol.32 , pp. 247-257
    • Pearl, J.1
  • 17
    • 0022818911 scopus 로고
    • Evaluating influence diagrams
    • Shachter, R. D., Evaluating influence diagrams, Oper. Res. 34, 871-882, 1986.
    • (1986) Oper. Res. , vol.34 , pp. 871-882
    • Shachter, R.D.1
  • 18
    • 0024038570 scopus 로고
    • Probabilistic inference and influence diagrams
    • Shachter, R. D., Probabilistic inference and influence diagrams, Oper. Res. 36, 589-605, 1988.
    • (1988) Oper. Res. , vol.36 , pp. 589-605
    • Shachter, R.D.1
  • 19
    • 0041487753 scopus 로고    scopus 로고
    • The equivalence of exact methods for probabilistic inference on belief networks
    • submitted for publication
    • Shachter, R. D., Andersen, S. K., and Szlovits, P., The equivalence of exact methods for probabilistic inference on belief networks, Artificial Intelligence, submitted for publication.
    • Artificial Intelligence
    • Shachter, R.D.1    Andersen, S.K.2    Szlovits, P.3
  • 21
    • 0001203638 scopus 로고
    • Simulation approaches to general probabilistic inference on belief networks
    • (M. Henrion, R. D. Shachter, L. N. Kanal, and J. F. Lemmer, Eds.), North-Holland, Amsterdam
    • Shachter, R. D., and Peot, M. A., Simulation approaches to general probabilistic inference on belief networks, in Uncertainty in Artificial Intelligence, 5 (M. Henrion, R. D. Shachter, L. N. Kanal, and J. F. Lemmer, Eds.), North-Holland, Amsterdam, 221-231, 1990.
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 221-231
    • Shachter, R.D.1    Peot, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.