-
1
-
-
85034559904
-
-
note
-
The literature of this area is quite extensive. References 2-11 are some of the more helpful reviews available.
-
-
-
-
2
-
-
84916527878
-
-
A. E. Lutskii, V. V. Prezhdo, L. I. Degtereva, and V. G. Gordienko, Russ. Chem. Rev. 51, 802 (1982).
-
(1982)
Russ. Chem. Rev.
, vol.51
, pp. 802
-
-
Lutskii, A.E.1
Prezhdo, V.V.2
Degtereva, L.I.3
Gordienko, V.G.4
-
10
-
-
84986840494
-
-
A. Morresi, L. Mariani, M. R. Distefano, and M. G. Giorgini, J. Raman Spectrosc. 26, 179 (1995).
-
(1995)
J. Raman Spectrosc.
, vol.26
, pp. 179
-
-
Morresi, A.1
Mariani, L.2
Distefano, M.R.3
Giorgini, M.G.4
-
16
-
-
0000384868
-
-
R. Biswas, S. Bhattacharyya, and B. Bagchi, J. Chem. Phys. 108, 4963 (1998); N. Gayahtri and B. Bagchi, ibid. 107, 10381 (1997).
-
(1998)
J. Chem. Phys.
, vol.108
, pp. 4963
-
-
Biswas, R.1
Bhattacharyya, S.2
Bagchi, B.3
-
17
-
-
0031358211
-
-
R. Biswas, S. Bhattacharyya, and B. Bagchi, J. Chem. Phys. 108, 4963 (1998); N. Gayahtri and B. Bagchi, ibid. 107, 10381 (1997).
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 10381
-
-
Gayahtri, N.1
Bagchi, B.2
-
24
-
-
0000039709
-
-
C. Heidelbach, I. I. Fedchenia, D. Schwarzer, and J. Schroeder, J. Chem. Phys. 108, 10152 (1998).
-
(1998)
J. Chem. Phys.
, vol.108
, pp. 10152
-
-
Heidelbach, C.1
Fedchenia, I.I.2
Schwarzer, D.3
Schroeder, J.4
-
26
-
-
0029328795
-
-
P. E. Savage, S. Gopalan, T. I. Mizan, C. J. Martino, and E. E. Brock, AIChE. J. 41, 1723 (1995).
-
(1995)
AIChE. J.
, vol.41
, pp. 1723
-
-
Savage, P.E.1
Gopalan, S.2
Mizan, T.I.3
Martino, C.J.4
Brock, E.E.5
-
34
-
-
0028545011
-
-
F. Marsault-Herail, F. Salmoun, J. Dubessy, and Y. Garrabos, J. Mol. Liq. 62, 251 (1994).
-
(1994)
J. Mol. Liq.
, vol.62
, pp. 251
-
-
Marsault-Herail, F.1
Salmoun, F.2
Dubessy, J.3
Garrabos, Y.4
-
39
-
-
0347560717
-
-
Thesis, Duke University
-
X. Pan, Thesis, Duke University, 1995.
-
(1995)
-
-
Pan, X.1
-
40
-
-
0033554953
-
-
preceding paper
-
X. Pan, J. C. McDonald, and R. A. MacPhail, J. Chem. Phys. 110, 1677 (1999), preceding paper.
-
(1999)
J. Chem. Phys.
, vol.110
, pp. 1677
-
-
Pan, X.1
McDonald, J.C.2
MacPhail, R.A.3
-
41
-
-
0031379424
-
-
N. Wada, M. Saito, D. Kitada, R. L. J. Smith, H. Inomata, K. Arai, and S. Saito, J. Phys. Chem. B 101, 10918 (1997).
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 10918
-
-
Wada, N.1
Saito, M.2
Kitada, D.3
Smith, R.L.J.4
Inomata, H.5
Arai, K.6
Saito, S.7
-
42
-
-
0031361687
-
-
D. J. Myers, R. S. Urdahl, B. J. Cherayil, and M. D. Fayer, J. Chem. Phys. 107, 9741 (1997).
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 9741
-
-
Myers, D.J.1
Urdahl, R.S.2
Cherayil, B.J.3
Fayer, M.D.4
-
43
-
-
0031559717
-
-
R. S. Urdahl, D. J. Myers, K. D. Rector, P. H. Davis, B. J. Cherayil, and M. D. Fayer, J. Chem. Phys. 107, 3747 (1997).
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 3747
-
-
Urdahl, R.S.1
Myers, D.J.2
Rector, K.D.3
Davis, P.H.4
Cherayil, B.J.5
Fayer, M.D.6
-
44
-
-
0030213544
-
-
D. Schwarzer, J. Troe, M. Votsmeier, and M. Zerezke, J. Chem. Phys. 105, 3121 (1996).
-
(1996)
J. Chem. Phys.
, vol.105
, pp. 3121
-
-
Schwarzer, D.1
Troe, J.2
Votsmeier, M.3
Zerezke, M.4
-
47
-
-
0042628868
-
-
2 vibrational relaxation/dephasing in supercritical Ar by Zewail and co-workers [C. Lienau and A. H. Zewail, J. Phys. Chem. 100, 18629 (1996); A. Materny, C. Lienau, and A. H. Zewail, ibid. 100, 18650 (1996); Q. Liu, C. Wan, and A. H. Zewail, ibid. 100, 18666 (1996)] are not included in this discussion because the conditions employed in this work are far removed from the critical point and do not show behavior of this sort.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 18629
-
-
Lienau, C.1
Zewail, A.H.2
-
48
-
-
1542476414
-
-
2 vibrational relaxation/dephasing in supercritical Ar by Zewail and co-workers [C. Lienau and A. H. Zewail, J. Phys. Chem. 100, 18629 (1996); A. Materny, C. Lienau, and A. H. Zewail, ibid. 100, 18650 (1996); Q. Liu, C. Wan, and A. H. Zewail, ibid. 100, 18666 (1996)] are not included in this discussion because the conditions employed in this work are far removed from the critical point and do not show behavior of this sort.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 18650
-
-
Materny, A.1
Lienau, C.2
Zewail, A.H.3
-
49
-
-
0342458008
-
-
2 vibrational relaxation/dephasing in supercritical Ar by Zewail and co-workers [C. Lienau and A. H. Zewail, J. Phys. Chem. 100, 18629 (1996); A. Materny, C. Lienau, and A. H. Zewail, ibid. 100, 18650 (1996); Q. Liu, C. Wan, and A. H. Zewail, ibid. 100, 18666 (1996)] are not included in this discussion because the conditions employed in this work are far removed from the critical point and do not show behavior of this sort.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 18666
-
-
Liu, Q.1
Wan, C.2
Zewail, A.H.3
-
53
-
-
0001380735
-
-
A. L. Aljibury, R. G. Snyder, H. L. Strauss, and K. Raghavachari, J. Chem. Phys. 84, 6872 (1986).
-
(1986)
J. Chem. Phys.
, vol.84
, pp. 6872
-
-
Aljibury, A.L.1
Snyder, R.G.2
Strauss, H.L.3
Raghavachari, K.4
-
57
-
-
0141442040
-
-
edited by F. V. Bright and M. E. P. McNally American Chemical Society, Washington, DC
-
D. Ben-Amotz, F. LaPlant, D. Shea, J. Gardecki, and D. List, in Supercritical Fluid Technology, Vol. 488, edited by F. V. Bright and M. E. P. McNally (American Chemical Society, Washington, DC, 1992), p. 18.
-
(1992)
Supercritical Fluid Technology, Vol. 488
, vol.488
, pp. 18
-
-
Ben-Amotz, D.1
LaPlant, F.2
Shea, D.3
Gardecki, J.4
List, D.5
-
58
-
-
0000437782
-
-
D. Ben-Amotz, M.-R. Lee, S. Y. Cho, and D. J. List, J. Chem. Phys. 96, 8781 (1992).
-
(1992)
J. Chem. Phys.
, vol.96
, pp. 8781
-
-
Ben-Amotz, D.1
Lee, M.-R.2
Cho, S.Y.3
List, D.J.4
-
60
-
-
85034543185
-
-
note
-
In Ref. 49 Remar and MacPhail corrected two minor errors in the Schwiezer and Chandler (Ref. 52) results for the repulsive contribution 10 the linewidth of a pseudo-diatomic vibration and found that after making these corrections the predicted contribution to be too small relative to the observed linewidths. However, this result was in part due to neglect of the second term in Eq. (2.14). Inclusion of this term leads to much better agreement between the observed linewidths and those calculated based on this repulsive collision model.
-
-
-
-
71
-
-
0002866235
-
-
edited by D. TerHaar Plenum, New York
-
R. Kubo, in Fluctuation, Relaxation and Resonance in Magnetic Systems, edited by D. TerHaar (Plenum, New York, 1962), p. 23.
-
(1962)
Fluctuation, Relaxation and Resonance in Magnetic Systems
, pp. 23
-
-
Kubo, R.1
-
75
-
-
85034552533
-
-
note
-
The discussion in this section is adapted from the work of Oxtoby (Refs. 4 and 73). The interested reader should consult these references for detailed derivations of the basic relationships employed here.
-
-
-
-
77
-
-
0004003691
-
-
Dover, New York
-
ik is the three-component vector associated with the description of normal mode k in terms of (unweighted) atomic displacements on atom i. See, for example, E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations (Dover, New York, 1955).
-
(1955)
Molecular Vibrations
-
-
Wilson, E.B.1
Decius, J.C.2
Cross, P.C.3
-
79
-
-
85034547512
-
-
note
-
CH, rather than Eq. (2.14) itself.
-
-
-
-
80
-
-
85034562641
-
-
note
-
The sorts of inductive terms that would be obtained from an analysis of ∂V/∂μ all involve products of at least the first power of μ and thus are negligible for vanishing permanent dipole moment.
-
-
-
-
81
-
-
0010922186
-
-
Gaussian, Inc., Pittsburgh, PA
-
GAUSSIAN 94, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Slefanov, A. Nanayakkaro, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople (Gaussian, Inc., Pittsburgh, PA, 1995).
-
(1995)
GAUSSIAN 94
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowski, J.16
Slefanov, B.B.17
Nanayakkaro, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.P.32
Head-Gordon, M.33
Gonzalez, C.34
Pople, J.A.35
more..
-
83
-
-
85034549432
-
-
note
-
12 in the simulations. However, based on comparisons of the results obtained using mobile and immobile solutes (Sec. IV D), the difference between the relevant correlation times these two choices of mass is expected to be only 5%-7%, which is of no consequence for the present work.
-
-
-
-
84
-
-
0028538483
-
-
It is important to note that the precise location of the critical point of "the" Lennard-Jones fluid in computer simulations depends upon how the potential is truncated, and to a lesser degree on the system size. The critical point we quote here applies to an unshifted potential that is truncated at 2.5σ. For a discussion of these effects see A. Z. Panagiotopoulos, Int. J. Thermophys. 15, 1057 (1994); N. B. Wilding, Phys. Rev. E 52, 602 (1995).
-
(1994)
Int. J. Thermophys.
, vol.15
, pp. 1057
-
-
Panagiotopoulos, A.Z.1
-
85
-
-
0000366719
-
-
It is important to note that the precise location of the critical point of "the" Lennard-Jones fluid in computer simulations depends upon how the potential is truncated, and to a lesser degree on the system size. The critical point we quote here applies to an unshifted potential that is truncated at 2.5σ. For a discussion of these effects see A. Z. Panagiotopoulos, Int. J. Thermophys. 15, 1057 (1994); N. B. Wilding, Phys. Rev. E 52, 602 (1995).
-
(1995)
Phys. Rev. E
, vol.52
, pp. 602
-
-
Wilding, N.B.1
-
86
-
-
84953648860
-
-
V. Vesovic, W. A. Wakeham, G. A. Olchowy, J. V. Sengers, and J. T. R. Watson, J. Phys. Chem. Ref. Data 19, 763 (1990).
-
(1990)
J. Phys. Chem. Ref. Data
, vol.19
, pp. 763
-
-
Vesovic, V.1
Wakeham, W.A.2
Olchowy, G.A.3
Sengers, J.V.4
Watson, J.T.R.5
-
88
-
-
0003517855
-
-
McGraw-Hill, New York
-
R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1987).
-
(1987)
The Properties of Gases and Liquids, 4th Ed.
-
-
Reid, R.C.1
Prausnitz, J.M.2
Poling, B.E.3
-
95
-
-
0346929617
-
-
B. C. Freasier, D. L. Jolly, N. D. Hamer, and S. Nordholm, Chem. Phys. 38, 293 (1979).
-
(1979)
Chem. Phys.
, vol.38
, pp. 293
-
-
Freasier, B.C.1
Jolly, D.L.2
Hamer, N.D.3
Nordholm, S.4
-
98
-
-
0000626615
-
-
L. E. S. deSouza, C. B. E. Guerin, D. Ben-Amotz, and I. Szleifer, J. Chem. Phys. 99, 9954 (1993).
-
(1993)
J. Chem. Phys.
, vol.99
, pp. 9954
-
-
DeSouza, L.E.S.1
Guerin, C.B.E.2
Ben-Amotz, D.3
Szleifer, I.4
-
99
-
-
85034535935
-
-
note
-
H(r)g(r)dV.
-
-
-
-
100
-
-
85034542415
-
-
note
-
Ω(t) which have little effect on the predicted spectra (see the data listed under the heading "transformed width" in Table III).
-
-
-
-
101
-
-
85034539815
-
-
note
-
Ω(t) and in this case the spectrum shows substantial inhomogeneous broadening. The same is not true of the lighter molecule OCS also studied by these same authors (Ref. 67).
-
-
-
-
102
-
-
85034530150
-
-
note
-
2)}.
-
-
-
-
103
-
-
85034558086
-
-
Ph.D. Thesis. The Pennsylvania State University, Chapter 3
-
c defined by Eq. (2.8) gives too much weight to the exponential tail than is really manifest in the line shape. See S. J. V. Frankland, Ph.D. Thesis. The Pennsylvania State University, 1997, Chapter 3 for more discussion.
-
(1997)
-
-
Frankland, S.J.V.1
-
104
-
-
85034534518
-
-
note
-
This large difference between the axial and equatorial predictions is only apparent. It results from the near cancellation of positive and negative contributions, which when viewed individually, are seen to be nearly equal for axial and equatorial C-H modes.
-
-
-
-
105
-
-
85034530443
-
-
note
-
We note that this problem does not exist in the analytical approaches developed in Refs. 52 and 53 since in these cases the ground-state forces are represented via hard-sphere rather than Lennard-Jones potentials.
-
-
-
-
106
-
-
85034534339
-
-
note
-
A factor of 2 is what is expected for a uniform distribution of solvent molecules averaged over a hemispherical region around the H atom.
-
-
-
-
107
-
-
85034553746
-
-
note
-
Expecting these parameters to be transferable between solvents also assumes that the Lorenz-Berthelot combining rules are correct.
-
-
-
-
108
-
-
85034549557
-
-
note
-
H inay seem rather large in the case of the liquid solvents, they represent changes in interaction energies upon vibrational excitation that are 1/2 as large. In all cases the change in well depth required to fit the experimental data is less than 10%, which seems physically reasonable.
-
-
-
-
109
-
-
85034551083
-
-
note
-
-1, in spite of the differences in the effective potentials displayed in Fig. 8.
-
-
-
-
111
-
-
85034542493
-
-
note
-
However, it is possible for more than a single atom within a polyatomic solvent molecule to interact repulsively with a single solute H atom.
-
-
-
-
112
-
-
85034550547
-
-
note
-
-1. The main source of ambiguity with such a working definition is how to count the double peaked spikes occurring at higher densities. [Two such events are seen in Fig. 11(b).] In the present work we count such double peaks as two collisions.
-
-
-
-
113
-
-
85034563556
-
-
note
-
r = 1.5).
-
-
-
-
114
-
-
85034543273
-
-
note
-
In performing these "mode" calculations all of the same parameters and interactions were included as in the Model 1 and Model 3 calculations previously described. For example, in Model 1 calculations the contribution of a given C-H bond involved the weighted force along the bond direction [Eq. (2.14)] and in Model 3 it involved only a nondirectional interaction with the H atom.
-
-
-
-
115
-
-
85034538168
-
-
note
-
2 data probably reflects a coincidental cancellation of opposing effects.
-
-
-
-
117
-
-
0002470521
-
-
ACS Symposium Series ed., edited by F. V. Bright and M. E. P. McNally American Chemical Society, Washington DC
-
B. L. Knutson, D. L. Tomasko, C. A. Eckert, P. G. Debenedetti, and A. A. Chialvo, in Recent Advances in Supercritical Fluid Technology: Applications and Fundamental Studies, Vol. 488, ACS Symposium Series ed., edited by F. V. Bright and M. E. P. McNally (American Chemical Society, Washington DC, 1992), p. 60.
-
(1992)
Recent Advances in Supercritical Fluid Technology: Applications and Fundamental Studies, Vol. 488
, vol.488
, pp. 60
-
-
Knutson, B.L.1
Tomasko, D.L.2
Eckert, C.A.3
Debenedetti, P.G.4
Chialvo, A.A.5
-
119
-
-
85034558562
-
-
note
-
The main reason for postulating an inhomogeneous mechanism was the observation that the widths of axial to equatorial modes display an approximately constant ratio which is nearly equal to the ratio of polarizability derivatives of these two C-H bonds. Since the present simulations reproduce these width ratios in a reasonable fashion within the context of a homogeneous broadening mechanism, the relationship to polarizability derivatives [as oppose to the ratio of their squares (Ref. 49)] must be largely coincidental.
-
-
-
-
124
-
-
0002487439
-
-
R. Inaba, K. Tominaga, M. Tasumi, K. A. Nelson, and K. Yoshihara, Chem. Phys. Lett. 211, 183 (1993).
-
(1993)
Chem. Phys. Lett.
, vol.211
, pp. 183
-
-
Inaba, R.1
Tominaga, K.2
Tasumi, M.3
Nelson, K.A.4
Yoshihara, K.5
|