-
2
-
-
0029377278
-
-
S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Appl. Phys. Lett. 67, 1868 (1995); Jpn. J. Appl. Phys. 34, L797 (1995).
-
(1995)
Appl. Phys. Lett.
, vol.67
, pp. 1868
-
-
Nakamura, S.1
Senoh, M.2
Iwasa, N.3
Nagahama, S.4
-
3
-
-
0029346154
-
-
S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Appl. Phys. Lett. 67, 1868 (1995); Jpn. J. Appl. Phys. 34, L797 (1995).
-
(1995)
Jpn. J. Appl. Phys.
, vol.34
-
-
-
4
-
-
0029779805
-
-
S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996); Appl. Phys. Lett. 68, 2105 (1996).
-
(1996)
Jpn. J. Appl. Phys.
, vol.35
-
-
Nakamura, S.1
Senoh, M.2
Nagahama, S.3
Iwasa, N.4
Yamada, T.5
Matsushita, T.6
Kiyoku, H.7
Sugimoto, Y.8
-
5
-
-
0030574949
-
-
S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996); Appl. Phys. Lett. 68, 2105 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.68
, pp. 2105
-
-
-
6
-
-
36549100787
-
-
M. A. Khan, R. A. Skogman, J. M. Van Hove, S. Krishnankutty, and R. M. Kolbas, Appl. Phys. Lett. 56, 1257 (1990).
-
(1990)
Appl. Phys. Lett.
, vol.56
, pp. 1257
-
-
Khan, M.A.1
Skogman, R.A.2
Van Hove, J.M.3
Krishnankutty, S.4
Kolbas, R.M.5
-
7
-
-
0029406797
-
-
A. Salvador, G. Liu, W. Kim, O. Aktas, A. Botchkarev, and H. Morkoç, Appl. Phys. Lett. 67, 3322 (1995).
-
(1995)
Appl. Phys. Lett.
, vol.67
, pp. 3322
-
-
Salvador, A.1
Liu, G.2
Kim, W.3
Aktas, O.4
Botchkarev, A.5
Morkoç, H.6
-
8
-
-
0029638659
-
-
M. Giehler, M. Ramsteiner, O. Brandt, H. Yang, and K. H. Ploog, Appl. Phys. Lett. 67, 733 (1995).
-
(1995)
Appl. Phys. Lett.
, vol.67
, pp. 733
-
-
Giehler, M.1
Ramsteiner, M.2
Brandt, O.3
Yang, H.4
Ploog, K.H.5
-
9
-
-
0029637553
-
-
T. Azuhata, T, Sota, K. Suzuki, and S. Nakamura, J. Phys., Condens. Matter. 7, 129 (1995).
-
(1995)
J. Phys., Condens. Matter.
, vol.7
, pp. 129
-
-
Azuhata, T.1
Sota, T.2
Suzuki, K.3
Nakamura, S.4
-
10
-
-
0025957964
-
-
K. Hayashi, K. Itoh, N. Sawaki, and I. Akasaki, Solid State Commun. 77, 115 (1991).
-
(1991)
Solid State Commun.
, vol.77
, pp. 115
-
-
Hayashi, K.1
Itoh, K.2
Sawaki, N.3
Akasaki, I.4
-
13
-
-
8744279139
-
-
unpublished
-
R. Niebuhr, K.-H. Bachem, C. Merz, S. Santic, U. Kaufmann, D. Behr, J. Wagner, W. Rothemund, and Y. Lu (unpublished).
-
-
-
Niebuhr, R.1
Bachem, K.-H.2
Merz, C.3
Santic, S.4
Kaufmann, U.5
Behr, D.6
Wagner, J.7
Rothemund, W.8
Lu, Y.9
-
14
-
-
0030149403
-
-
0.85N conduction band offset of 0.351 eV calculated from AIN band gap energy of 6.28 eV [Physics of Group IV Elements and III-V Compounds, of Landolt Börnstein, edited by O. Madelung (Springer, Heidelberg, 1982), Vol. 17a] and a valence band offset between GaN and AlN of 0.5 eV J. Bauer et al., Appl. Phys. Lett. 65, 2211 (1994)]. Low temperature photoluminescence measurements on the present QW samples showed a QW-related emission which shifts to higher energies when the well width is reduced from 4 to 2 nm. The absolute emission energy for the 4 nm QW, however, is well below the band edge emission energy of bulklike GaN, which indicates a defect related QW emission.
-
(1996)
Appl. Phys. Lett.
, vol.68
, pp. 2784
-
-
Chen, G.D.1
-
15
-
-
0003524130
-
-
Springer, Heidelberg
-
0.85N conduction band offset of 0.351 eV calculated from AIN band gap energy of 6.28 eV [Physics of Group IV Elements and III-V Compounds, of Landolt Börnstein, edited by O. Madelung (Springer, Heidelberg, 1982), Vol. 17a] and a valence band offset between GaN and AlN of 0.5 eV J. Bauer et al., Appl. Phys. Lett. 65, 2211 (1994)]. Low temperature photoluminescence measurements on the present QW samples showed a QW-related emission which shifts to higher energies when the well width is reduced from 4 to 2 nm. The absolute emission energy for the 4 nm QW, however, is well below the band edge emission energy of bulklike GaN, which indicates a defect related QW emission.
-
(1982)
Physics of Group IV Elements and III-V Compounds, of Landolt Börnstein
, vol.17 A
-
-
Madelung, O.1
-
16
-
-
21544480101
-
-
0.85N conduction band offset of 0.351 eV calculated from AIN band gap energy of 6.28 eV [Physics of Group IV Elements and III-V Compounds, of Landolt Börnstein, edited by O. Madelung (Springer, Heidelberg, 1982), Vol. 17a] and a valence band offset between GaN and AlN of 0.5 eV J. Bauer et al., Appl. Phys. Lett. 65, 2211 (1994)]. Low temperature photoluminescence measurements on the present QW samples showed a QW-related emission which shifts to higher energies when the well width is reduced from 4 to 2 nm. The absolute emission energy for the 4 nm QW, however, is well below the band edge emission energy of bulklike GaN, which indicates a defect related QW emission.
-
(1994)
Appl. Phys. Lett.
, vol.65
, pp. 2211
-
-
Bauer, J.1
-
18
-
-
0001078516
-
-
H. Grille and F. Bechstedt, Superlattices Microstruct. 16, 29 (1994); J. Raman Spectrosc. 27, 201 (1996).
-
(1996)
J. Raman Spectrosc.
, vol.27
, pp. 201
-
-
|