메뉴 건너뛰기




Volumn 181, Issue 4, 2005, Pages 493-508

Testing the generalization of artificial neural networks with cross-validation and independent-validation in modelling rice tillering dynamics

Author keywords

Generalization ability; Model validation; Neural networks; Rice modelling; Tillering dynamics

Indexed keywords

EMPIRICAL MODELS; SET SIZE; TILLERING DYNAMICS; TRAINING DATA;

EID: 8844276108     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecolmodel.2004.06.035     Document Type: Article
Times cited : (21)

References (36)
  • 1
    • 0031394686 scopus 로고    scopus 로고
    • Combining expert systems and neural networks for learning site-specific conditions
    • I. Broner, and C.R. Comstock Combining expert systems and neural networks for learning site-specific conditions Comput. Electr. Eng. 19 1997 37 53
    • (1997) Comput. Electr. Eng. , vol.19 , pp. 37-53
    • Broner, I.1    Comstock, C.R.2
  • 2
    • 0031921468 scopus 로고    scopus 로고
    • A temperature-based model of direct water-seeded rice (Oryza sativa) stand establishment in California
    • B.P. Carton, T.C. Foin, K.D. Gibson, and J.E. Hill A temperature-based model of direct water-seeded rice (Oryza sativa) stand establishment in California Agr. Forest Meteorol. 90 1998 91 102
    • (1998) Agr. Forest Meteorol. , vol.90 , pp. 91-102
    • Carton, B.P.1    Foin, T.C.2    Gibson, K.D.3    Hill, J.E.4
  • 6
    • 0033169042 scopus 로고    scopus 로고
    • Estimating ecosystem risks using cross-validated multiple regression and cross-validated holographic neural networks
    • C.S. Findlay, and L. Zheng Estimating ecosystem risks using cross-validated multiple regression and cross-validated holographic neural networks Ecol. Model. 119 1999 57 72
    • (1999) Ecol. Model. , vol.119 , pp. 57-72
    • Findlay, C.S.1    Zheng, L.2
  • 8
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • G.D. Garson Interpreting neural-network connection weights Artif. Intell. Expert. 6 1991 47 51
    • (1991) Artif. Intell. Expert. , vol.6 , pp. 47-51
    • Garson, G.D.1
  • 9
    • 0029223565 scopus 로고
    • Back-propagation neural networks for modelling complex systems
    • A.T. Goh Back-propagation neural networks for modelling complex systems Artif. Intell. Eng. 9 1995 143 151
    • (1995) Artif. Intell. Eng. , vol.9 , pp. 143-151
    • Goh, A.T.1
  • 10
    • 0041018985 scopus 로고
    • Interference of a rule by a neural network with thermal noise
    • G. Györgyi Interference of a rule by a neural network with thermal noise Phys. Rev. Lett. 64 1990 2957 2960
    • (1990) Phys. Rev. Lett. , vol.64 , pp. 2957-2960
    • Györgyi, G.1
  • 11
    • 0346029844 scopus 로고
    • Simulation model of tillering dynamics of rice community
    • Y. Huang, L. Gao, and Z. Jin Simulation model of tillering dynamics of rice community Chin. J. Ecol. 13 4 1994 27 32 (in Chinese)
    • (1994) Chin. J. Ecol. , vol.13 , Issue.4 , pp. 27-32
    • Huang, Y.1    Gao, L.2    Jin, Z.3
  • 12
    • 0030019696 scopus 로고    scopus 로고
    • A software package for optimizing rice production management based on growth simulation and feedback control
    • Y. Huang, L. Gao, Z. Jin, and H. Chen A software package for optimizing rice production management based on growth simulation and feedback control Agr. Syst. 50 1996 335 354
    • (1996) Agr. Syst. , vol.50 , pp. 335-354
    • Huang, Y.1    Gao, L.2    Jin, Z.3    Chen, H.4
  • 13
    • 0002849012 scopus 로고
    • Calibration of process-oriented models
    • P.H.M. Janssen, and P.S.C. Heuberger Calibration of process-oriented models Ecol. Model. 83 1995 55 66
    • (1995) Ecol. Model. , vol.83 , pp. 55-66
    • Janssen, P.H.M.1    Heuberger, P.S.C.2
  • 14
    • 8844263511 scopus 로고
    • The model of relations of rice tillering to light and temperature conditions
    • D. Jiang The model of relations of rice tillering to light and temperature conditions Acta Bot. Sin. 24 3 1982 247 251 (in Chinese)
    • (1982) Acta Bot. Sin. , vol.24 , Issue.3 , pp. 247-251
    • Jiang, D.1
  • 17
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in Ecol. Model. An introduction
    • S. Lek, and J.F. Guégan Artificial neural networks as a tool in Ecol. Model. An introduction Ecol. Model. 120 1999 65 73
    • (1999) Ecol. Model. , vol.120 , pp. 65-73
    • Lek, S.1    Guégan, J.F.2
  • 18
    • 0027091847 scopus 로고
    • Parameter estimation of ecological models
    • S. Marsili-Libelli Parameter estimation of ecological models Ecol. Model. 62 1992 233 258
    • (1992) Ecol. Model. , vol.62 , pp. 233-258
    • Marsili-Libelli, S.1
  • 19
    • 0037202445 scopus 로고    scopus 로고
    • Comparing five modelling techniques for predicting forest characteristics
    • G.G. Moisen, and T.S. Frescino Comparing five modelling techniques for predicting forest characteristics Ecol. Model. 157 2002 209 225
    • (2002) Ecol. Model. , vol.157 , pp. 209-225
    • Moisen, G.G.1    Frescino, T.S.2
  • 20
    • 0007836714 scopus 로고    scopus 로고
    • AI approaches to identification and control to total plant production
    • T. Kozai H. Murase T. Hoshi 24-26 April 1998, Makuhari, Chiba, Japan
    • T. Morimoto, and Y. Hashimoto AI approaches to identification and control to total plant production T. Kozai H. Murase T. Hoshi Preprints 3rd IFAC: CIGR Workshop on Artificial Intelligence in Agriculture 24-26 April 1998, Makuhari, Chiba, Japan 1998 1 20
    • (1998) Preprints 3rd IFAC: CIGR Workshop on Artificial Intelligence in Agriculture , pp. 1-20
    • Morimoto, T.1    Hashimoto, Y.2
  • 21
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the "black box": A randomization approach for understanding variable contributions in artificial neural networks
    • J.D. Olden, and D.A. Jackson Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks Ecol. Model. 154 2002 135 150
    • (2002) Ecol. Model. , vol.154 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 22
    • 0037442528 scopus 로고    scopus 로고
    • Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters
    • Y.-S. Park, R. Cereghino, A. Compin, and S. Lek Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters Ecol. Model. 160 2003 265 280
    • (2003) Ecol. Model. , vol.160 , pp. 265-280
    • Park, Y.-S.1    Cereghino, R.2    Compin, A.3    Lek, S.4
  • 23
    • 0031591149 scopus 로고    scopus 로고
    • Prediction of functional characteristics of ecosystems: A comparison of artificial neural networks and regression models
    • J.M. Paruelo, and F. Tomasel Prediction of functional characteristics of ecosystems: a comparison of artificial neural networks and regression models Ecol. Model. 98 1997 173 186
    • (1997) Ecol. Model. , vol.98 , pp. 173-186
    • Paruelo, J.M.1    Tomasel, F.2
  • 24
    • 8844287307 scopus 로고
    • Jiangxi Science and Technology Press Nanchang, P.R. China
    • C. Qi Rice Cultivation Mode of High Yield 1986 Jiangxi Science and Technology Press Nanchang, P.R. China (in Chinese)
    • (1986) Rice Cultivation Mode of High Yield
    • Qi, C.1
  • 26
    • 0035673819 scopus 로고    scopus 로고
    • Advances in neural network modelling of phytoplankton primary production
    • M. Scardi Advances in neural network modelling of phytoplankton primary production Ecol. Model. 146 2001 33 45
    • (2001) Ecol. Model. , vol.146 , pp. 33-45
    • Scardi, M.1
  • 27
    • 0031212622 scopus 로고    scopus 로고
    • The use of neural networks in agroecological modelling
    • A. Schultz, and R. Wieland The use of neural networks in agroecological modelling Comput. Electr. Eng. 18 1997 73 90
    • (1997) Comput. Electr. Eng. , vol.18 , pp. 73-90
    • Schultz, A.1    Wieland, R.2
  • 28
    • 0034306915 scopus 로고    scopus 로고
    • Neural networks in agroecological modelling-stylish application or helpful tool?
    • A. Schultz, R. Wieland, and G. Lutze Neural networks in agroecological modelling-stylish application or helpful tool? Comput. Electr. Eng. 29 2000 73 97
    • (2000) Comput. Electr. Eng. , vol.29 , pp. 73-97
    • Schultz, A.1    Wieland, R.2    Lutze, G.3
  • 30
    • 0037114443 scopus 로고    scopus 로고
    • Comparison of different modelling strategies for simulating gas exchange of a Douglas-fir forest
    • M.T. Van Wijk, W. Bouten, and J.M. Verstraten Comparison of different modelling strategies for simulating gas exchange of a Douglas-fir forest Ecol. Model. 158 2002 63 81
    • (2002) Ecol. Model. , vol.158 , pp. 63-81
    • Van Wijk, M.T.1    Bouten, W.2    Verstraten, J.M.3
  • 31
    • 0036468601 scopus 로고    scopus 로고
    • Atmospheric urban pollution: Applications of an artificial neural network (ANN) to the city of Perugia
    • P. Viotti, G. Liuti, and P. Di Genova Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia Ecol. Model. 148 2002 27 46
    • (2002) Ecol. Model. , vol.148 , pp. 27-46
    • Viotti, P.1    Liuti, G.2    Di Genova, P.3
  • 32
    • 8844264259 scopus 로고    scopus 로고
    • Study on basic dynamic model for stem and tiller growth and population classification in Rice
    • F. Wang, and P. Huang Study on basic dynamic model for stem and tiller growth and population classification in Rice Scientia Agric. Sin. 30 1 1997 57 64 (in Chinese)
    • (1997) Scientia Agric. Sin. , vol.30 , Issue.1 , pp. 57-64
    • Wang, F.1    Huang, P.2
  • 33
    • 8844229310 scopus 로고
    • Jiansu Science and Technology Press Nangjing, P.R. China
    • L. Yang Rice Cultivation Science in Jiansu 1990 Jiansu Science and Technology Press Nangjing, P.R. China (in Chinese)
    • (1990) Rice Cultivation Science in Jiansu
    • Yang, L.1
  • 35
    • 0345621440 scopus 로고
    • Dynamic simulation for rice growth and yield. I. The comparison and application of rice development speed statistical models
    • Y. Zou, Q. Tang, C. Hu, S. Liu, and D. Xiao Dynamic simulation for rice growth and yield. I. The comparison and application of rice development speed statistical models Crop Res. 5 1991 16 20 (in Chinese)
    • (1991) Crop Res. , vol.5 , pp. 16-20
    • Zou, Y.1    Tang, Q.2    Hu, C.3    Liu, S.4    Xiao, D.5
  • 36
    • 0345621439 scopus 로고
    • Dynamic simulation for rice growth and yield. II. The comparison and application of rice tillering statistical models
    • Y. Zou, Q. Tang, C. Hu, S. Liu, and D. Xiao Dynamic simulation for rice growth and yield. II. The comparison and application of rice tillering statistical models Crop Res. 5 1991 18 22 (in Chinese)
    • (1991) Crop Res. , vol.5 , pp. 18-22
    • Zou, Y.1    Tang, Q.2    Hu, C.3    Liu, S.4    Xiao, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.