-
1
-
-
0346238931
-
Task clustering and gating for bayesian multitask learning
-
B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. JMLR, 4:83-99, 2003.
-
(2003)
JMLR
, vol.4
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
2
-
-
33745139169
-
Cross-generalization: Learning novel classes from a single example by feature replacement
-
E. Bart and S. Ullman. Cross-generalization: learning novel classes from a single example by feature replacement. In CVPR, 2005.
-
(2005)
CVPR
-
-
Bart, E.1
Ullman, S.2
-
4
-
-
84860615448
-
On taxonomies for multi-class image categorization
-
A. Binder, K.-R. Mller, and M. Kawanabe.On taxonomies for multi-class image categorization. IJCV, pages 1-21, 2011.
-
(2011)
IJCV
, pp. 1-21
-
-
Binder, A.1
Mller, K.-R.2
Kawanabe, M.3
-
6
-
-
51949090223
-
In defense of nearest-neighbor based image classification
-
O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image classification. In CVPR, 2008.
-
(2008)
CVPR
-
-
Boiman, O.1
Shechtman, E.2
Irani, M.3
-
7
-
-
33646760990
-
Evaluating wordnet-based measures of lexical semantic relatedness
-
March
-
A. Budanitsky and G. Hirst. Evaluating wordnet-based measures of lexical semantic relatedness. Comput. Linguist., 32:13-47, March 2006.
-
(2006)
Comput. Linguist.
, vol.32
, pp. 13-47
-
-
Budanitsky, A.1
Hirst, G.2
-
8
-
-
0031189914
-
Multitask learning
-
R. Caruana. Multitask learning. Machine Learning, 28:41-75, 1997.
-
(1997)
Machine Learning
, vol.28
, pp. 41-75
-
-
Caruana, R.1
-
9
-
-
80053139009
-
Smoothing proximal gradient method for general structured sparse learning
-
X. Chen, Q. Lin, S. Kim, J. Carbonell, and E. P. Xing. Smoothing proximal gradient method for general structured sparse learning. In UAI, 2011.
-
(2011)
UAI
-
-
Chen, X.1
Lin, Q.2
Kim, S.3
Carbonell, J.4
Xing, E.P.5
-
10
-
-
56049109090
-
Map-reduce for machine learning on multicore
-
C. Chu, S. Kim, Y. Lin, Y. Yu, G., A. Ng, and K.Olukotun. Map-reduce for machine learning on multicore. In NIPS. 2007.
-
(2007)
NIPS
-
-
Chu, C.1
Kim, S.2
Lin, Y.3
Yu, G.Y.4
Ng, A.5
Olukotun, K.6
-
11
-
-
80052876786
-
What does classifying more than 10,000 image categories tell us?
-
J. Deng, A. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 image categories tell us? In ECCV, 2010.
-
(2010)
ECCV
-
-
Deng, J.1
Berg, A.2
Li, K.3
Fei-Fei, L.4
-
12
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
13
-
-
85162353669
-
Fast and balanced: Efficient label tree learning for large scale object recognition
-
J. Deng, S. Satheesh, A. Berg, and L. Fei-Fei. Fast and balanced: Efficient label tree learning for large scale object recognition. In NIPS, 2011.
-
(2011)
NIPS
-
-
Deng, J.1
Satheesh, S.2
Berg, A.3
Fei-Fei, L.4
-
14
-
-
84932617705
-
Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In CVPR Workshop on Generative-Model Based Vision, 2004.
-
(2004)
CVPR Workshop on Generative-Model Based Vision
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
15
-
-
33144466753
-
One-shot learning of object categories
-
L. Fei-Fei, R. Fergus, and P. Perona.One-shot learning of object categories. PAMI, 28:594-611, 2006.
-
(2006)
PAMI
, vol.28
, pp. 594-611
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
16
-
-
80052894360
-
Semantic label sharing for learning with many categories
-
ECCV
-
R. Fergus, H. Bernal, Y.Weiss, and A. Torralba. Semantic label sharing for learning with many categories. In ECCV, ECCV'10, 2010.
-
(2010)
ECCV'10
-
-
Fergus, R.1
Bernal, H.2
Weiss, Y.3
Torralba, A.4
-
17
-
-
84856654322
-
Discriminative learning of relaxed hierarchy for large-scale visual recognition
-
T. Gao and D. Koller. Discriminative learning of relaxed hierarchy for large-scale visual recognition. In ICCV, 2011.
-
(2011)
ICCV
-
-
Gao, T.1
Koller, D.2
-
19
-
-
70049084979
-
Clustered multi-task learning: A convex formulation
-
L. Jacob, F. Bach, and J.-P. Vert. Clustered multi-task learning: A convex formulation. In NIPS, 2008.
-
(2008)
NIPS
-
-
Jacob, L.1
Bach, F.2
Vert, J.-P.3
-
20
-
-
77956506018
-
Proximal methods for sparse hierarchical dictionary learning
-
R. Jenatton, J. Mairal, G.Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In ICML, 2010.
-
(2010)
ICML
-
-
Jenatton, R.1
Mairal, J.2
Obozinski, G.3
Bach, F.4
-
21
-
-
77956548668
-
Tree-guided group lasso for multi-task regression with structured sparsity
-
S. Kim and E. Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In ICML, 2010.
-
(2010)
ICML
-
-
Kim, S.1
Xing, E.2
-
22
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
-
(2006)
CVPR
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
23
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86:2278-2324, 1998.
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
24
-
-
80052870284
-
Large-scale image classification: Fast feature extraction and svm training
-
Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang. Large-scale image classification: fast feature extraction and svm training. In CVPR, 2011.
-
(2011)
CVPR
-
-
Lin, Y.1
Lv, F.2
Zhu, S.3
Yang, M.4
Cour, T.5
Yu, K.6
Cao, L.7
Huang, T.8
-
25
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60:91-110, 2004.
-
(2004)
IJCV
, vol.60
, pp. 91-110
-
-
Lowe, D.1
-
26
-
-
0033712893
-
Learning from one example through shared densities on transforms
-
E. Miller, N. Matsakis, and P. Viola. Learning from one example through shared densities on transforms. In CVPR, 2000.
-
(2000)
CVPR
-
-
Miller, E.1
Matsakis, N.2
Viola, P.3
-
28
-
-
33845573438
-
Incremental learning of object detectors using a visual shape alphabet
-
A.Opelt, A. Pinz, and A. Zisserman. Incremental learning of object detectors using a visual shape alphabet. In CVPR, 2006.
-
(2006)
CVPR
-
-
Opelt, A.1
Pinz, A.2
Zisserman, A.3
-
29
-
-
79959771606
-
Improving the fisher kernel for large-scale image classification
-
F. Perronnin, J. Sanchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
-
(2010)
ECCV
-
-
Perronnin, F.1
Sanchez, J.2
Mensink, T.3
-
30
-
-
51949094374
-
Transfer learning for image classification with sparse prototype representations
-
A. Quattoni, M. Collins, and T. Darrell. Transfer learning for image classification with sparse prototype representations. In CVPR, 2008.
-
(2008)
CVPR
-
-
Quattoni, A.1
Collins, M.2
Darrell, T.3
-
31
-
-
39749186006
-
Labelme: A database and web-based tool for image annotation
-
B. Russell, A. Torralba, K. Murphy, andW. Freeman. Labelme: A database and web-based tool for image annotation. IJCV, 77:157-173, 2008.
-
(2008)
IJCV
, vol.77
, pp. 157-173
-
-
Russell, B.1
Torralba, A.2
Murphy, K.3
Freeman, W.4
-
32
-
-
80052905403
-
Learning to share visual appearance for multiclass object detection
-
R. Salakhutdinov, A. Torralba, and Josh Tenenbaum. Learning to share visual appearance for multiclass object detection. In CVPR, 2011.
-
(2011)
CVPR
-
-
Salakhutdinov, R.1
Torralba, A.2
Tenenbaum, J.3
-
33
-
-
33745918022
-
Learning hierarchical models of scenes, objects, and parts
-
E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. Learning hierarchical models of scenes, objects, and parts. In CVPR, 2005.
-
(2005)
CVPR
-
-
Sudderth, E.1
Torralba, A.2
Freeman, W.3
Willsky, A.4
-
34
-
-
0034202338
-
Separating style and content with bilinear models
-
J. Tenenbaum and W. Freeman. Separating style and content with bilinear models. Neural Computation, 12:1247-1283, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 1247-1283
-
-
Tenenbaum, J.1
Freeman, W.2
-
35
-
-
12844266177
-
Sparsity and smoothness via the fused lasso
-
R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society Series B, pages 91-108, 2005.
-
(2005)
Journal of the Royal Statistical Society Series B
, pp. 91-108
-
-
Tibshirani, R.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Knight, K.5
-
36
-
-
54749092170
-
80 million tiny images: A large data set for nonparametric object and scene recognition
-
A. Torralba, R. Fergus, andW. Freeman. 80 million tiny images: A large data set for nonparametric object and scene recognition. PAMI, 30:1958-1970, 2008.
-
(2008)
PAMI
, vol.30
, pp. 1958-1970
-
-
Torralba, A.1
Fergus, R.2
Freeman, W.3
-
37
-
-
5044224293
-
Sharing features: Efficient boosting procedures for multiclass object detection
-
A. Torralba, K. Murphy, and W. Freeman. Sharing features: efficient boosting procedures for multiclass object detection. In CVPR, 2004.
-
(2004)
CVPR
-
-
Torralba, A.1
Murphy, K.2
Freeman, W.3
-
38
-
-
77955996870
-
Locality-constrained linear coding for image classification
-
J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010.
-
(2010)
CVPR
-
-
Wang, J.1
Yang, J.2
Yu, K.3
Lv, F.4
Huang, T.5
Gong, Y.6
|