메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Large-scale category structure aware image categorization

Author keywords

[No Author keywords available]

Indexed keywords

IMAGING SYSTEMS; LEARNING SYSTEMS; SEMANTICS;

EID: 85162562805     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (83)

References (38)
  • 1
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for bayesian multitask learning
    • B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. JMLR, 4:83-99, 2003.
    • (2003) JMLR , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 2
    • 33745139169 scopus 로고    scopus 로고
    • Cross-generalization: Learning novel classes from a single example by feature replacement
    • E. Bart and S. Ullman. Cross-generalization: learning novel classes from a single example by feature replacement. In CVPR, 2005.
    • (2005) CVPR
    • Bart, E.1    Ullman, S.2
  • 4
    • 84860615448 scopus 로고    scopus 로고
    • On taxonomies for multi-class image categorization
    • A. Binder, K.-R. Mller, and M. Kawanabe.On taxonomies for multi-class image categorization. IJCV, pages 1-21, 2011.
    • (2011) IJCV , pp. 1-21
    • Binder, A.1    Mller, K.-R.2    Kawanabe, M.3
  • 6
    • 51949090223 scopus 로고    scopus 로고
    • In defense of nearest-neighbor based image classification
    • O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image classification. In CVPR, 2008.
    • (2008) CVPR
    • Boiman, O.1    Shechtman, E.2    Irani, M.3
  • 7
    • 33646760990 scopus 로고    scopus 로고
    • Evaluating wordnet-based measures of lexical semantic relatedness
    • March
    • A. Budanitsky and G. Hirst. Evaluating wordnet-based measures of lexical semantic relatedness. Comput. Linguist., 32:13-47, March 2006.
    • (2006) Comput. Linguist. , vol.32 , pp. 13-47
    • Budanitsky, A.1    Hirst, G.2
  • 8
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana. Multitask learning. Machine Learning, 28:41-75, 1997.
    • (1997) Machine Learning , vol.28 , pp. 41-75
    • Caruana, R.1
  • 9
    • 80053139009 scopus 로고    scopus 로고
    • Smoothing proximal gradient method for general structured sparse learning
    • X. Chen, Q. Lin, S. Kim, J. Carbonell, and E. P. Xing. Smoothing proximal gradient method for general structured sparse learning. In UAI, 2011.
    • (2011) UAI
    • Chen, X.1    Lin, Q.2    Kim, S.3    Carbonell, J.4    Xing, E.P.5
  • 11
    • 80052876786 scopus 로고    scopus 로고
    • What does classifying more than 10,000 image categories tell us?
    • J. Deng, A. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 image categories tell us? In ECCV, 2010.
    • (2010) ECCV
    • Deng, J.1    Berg, A.2    Li, K.3    Fei-Fei, L.4
  • 13
    • 85162353669 scopus 로고    scopus 로고
    • Fast and balanced: Efficient label tree learning for large scale object recognition
    • J. Deng, S. Satheesh, A. Berg, and L. Fei-Fei. Fast and balanced: Efficient label tree learning for large scale object recognition. In NIPS, 2011.
    • (2011) NIPS
    • Deng, J.1    Satheesh, S.2    Berg, A.3    Fei-Fei, L.4
  • 14
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In CVPR Workshop on Generative-Model Based Vision, 2004.
    • (2004) CVPR Workshop on Generative-Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 15
    • 33144466753 scopus 로고    scopus 로고
    • One-shot learning of object categories
    • L. Fei-Fei, R. Fergus, and P. Perona.One-shot learning of object categories. PAMI, 28:594-611, 2006.
    • (2006) PAMI , vol.28 , pp. 594-611
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 16
    • 80052894360 scopus 로고    scopus 로고
    • Semantic label sharing for learning with many categories
    • ECCV
    • R. Fergus, H. Bernal, Y.Weiss, and A. Torralba. Semantic label sharing for learning with many categories. In ECCV, ECCV'10, 2010.
    • (2010) ECCV'10
    • Fergus, R.1    Bernal, H.2    Weiss, Y.3    Torralba, A.4
  • 17
    • 84856654322 scopus 로고    scopus 로고
    • Discriminative learning of relaxed hierarchy for large-scale visual recognition
    • T. Gao and D. Koller. Discriminative learning of relaxed hierarchy for large-scale visual recognition. In ICCV, 2011.
    • (2011) ICCV
    • Gao, T.1    Koller, D.2
  • 19
    • 70049084979 scopus 로고    scopus 로고
    • Clustered multi-task learning: A convex formulation
    • L. Jacob, F. Bach, and J.-P. Vert. Clustered multi-task learning: A convex formulation. In NIPS, 2008.
    • (2008) NIPS
    • Jacob, L.1    Bach, F.2    Vert, J.-P.3
  • 20
    • 77956506018 scopus 로고    scopus 로고
    • Proximal methods for sparse hierarchical dictionary learning
    • R. Jenatton, J. Mairal, G.Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In ICML, 2010.
    • (2010) ICML
    • Jenatton, R.1    Mairal, J.2    Obozinski, G.3    Bach, F.4
  • 21
    • 77956548668 scopus 로고    scopus 로고
    • Tree-guided group lasso for multi-task regression with structured sparsity
    • S. Kim and E. Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In ICML, 2010.
    • (2010) ICML
    • Kim, S.1    Xing, E.2
  • 22
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 23
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86:2278-2324, 1998.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 24
    • 80052870284 scopus 로고    scopus 로고
    • Large-scale image classification: Fast feature extraction and svm training
    • Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang. Large-scale image classification: fast feature extraction and svm training. In CVPR, 2011.
    • (2011) CVPR
    • Lin, Y.1    Lv, F.2    Zhu, S.3    Yang, M.4    Cour, T.5    Yu, K.6    Cao, L.7    Huang, T.8
  • 25
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60:91-110, 2004.
    • (2004) IJCV , vol.60 , pp. 91-110
    • Lowe, D.1
  • 26
    • 0033712893 scopus 로고    scopus 로고
    • Learning from one example through shared densities on transforms
    • E. Miller, N. Matsakis, and P. Viola. Learning from one example through shared densities on transforms. In CVPR, 2000.
    • (2000) CVPR
    • Miller, E.1    Matsakis, N.2    Viola, P.3
  • 28
    • 33845573438 scopus 로고    scopus 로고
    • Incremental learning of object detectors using a visual shape alphabet
    • A.Opelt, A. Pinz, and A. Zisserman. Incremental learning of object detectors using a visual shape alphabet. In CVPR, 2006.
    • (2006) CVPR
    • Opelt, A.1    Pinz, A.2    Zisserman, A.3
  • 29
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Sanchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
    • (2010) ECCV
    • Perronnin, F.1    Sanchez, J.2    Mensink, T.3
  • 30
    • 51949094374 scopus 로고    scopus 로고
    • Transfer learning for image classification with sparse prototype representations
    • A. Quattoni, M. Collins, and T. Darrell. Transfer learning for image classification with sparse prototype representations. In CVPR, 2008.
    • (2008) CVPR
    • Quattoni, A.1    Collins, M.2    Darrell, T.3
  • 31
    • 39749186006 scopus 로고    scopus 로고
    • Labelme: A database and web-based tool for image annotation
    • B. Russell, A. Torralba, K. Murphy, andW. Freeman. Labelme: A database and web-based tool for image annotation. IJCV, 77:157-173, 2008.
    • (2008) IJCV , vol.77 , pp. 157-173
    • Russell, B.1    Torralba, A.2    Murphy, K.3    Freeman, W.4
  • 32
    • 80052905403 scopus 로고    scopus 로고
    • Learning to share visual appearance for multiclass object detection
    • R. Salakhutdinov, A. Torralba, and Josh Tenenbaum. Learning to share visual appearance for multiclass object detection. In CVPR, 2011.
    • (2011) CVPR
    • Salakhutdinov, R.1    Torralba, A.2    Tenenbaum, J.3
  • 33
    • 33745918022 scopus 로고    scopus 로고
    • Learning hierarchical models of scenes, objects, and parts
    • E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. Learning hierarchical models of scenes, objects, and parts. In CVPR, 2005.
    • (2005) CVPR
    • Sudderth, E.1    Torralba, A.2    Freeman, W.3    Willsky, A.4
  • 34
    • 0034202338 scopus 로고    scopus 로고
    • Separating style and content with bilinear models
    • J. Tenenbaum and W. Freeman. Separating style and content with bilinear models. Neural Computation, 12:1247-1283, 2000.
    • (2000) Neural Computation , vol.12 , pp. 1247-1283
    • Tenenbaum, J.1    Freeman, W.2
  • 36
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition
    • A. Torralba, R. Fergus, andW. Freeman. 80 million tiny images: A large data set for nonparametric object and scene recognition. PAMI, 30:1958-1970, 2008.
    • (2008) PAMI , vol.30 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.3
  • 37
    • 5044224293 scopus 로고    scopus 로고
    • Sharing features: Efficient boosting procedures for multiclass object detection
    • A. Torralba, K. Murphy, and W. Freeman. Sharing features: efficient boosting procedures for multiclass object detection. In CVPR, 2004.
    • (2004) CVPR
    • Torralba, A.1    Murphy, K.2    Freeman, W.3
  • 38
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010.
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.