메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Kernel Bayes' rule

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; INFERENCE ENGINES;

EID: 85162423079     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (33)

References (27)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68(3):337-404, 1950.
    • (1950) Trans. Amer. Math. Soc. , vol.68 , Issue.3 , pp. 337-404
    • Aronszajn, N.1
  • 2
    • 84966251435 scopus 로고
    • Joint measures and cross-covariance operators
    • C.R. Baker. Joint measures and cross-covariance operators. Trans. Amer. Math. Soc., 186:273-289, 1973.
    • (1973) Trans. Amer. Math. Soc. , vol.186 , pp. 273-289
    • Baker, C.R.1
  • 5
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. JMLR, 2:243-264, 2001.
    • (2001) JMLR , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 6
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
    • K. Fukumizu, F.R. Bach, and M.I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. JMLR, 5:73-99, 2004.
    • (2004) JMLR , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 7
    • 68649121147 scopus 로고    scopus 로고
    • Kernel dimension reduction in regression
    • K. Fukumizu, F.R. Bach, and M.I. Jordan. Kernel dimension reduction in regression. Anna. Stat., 37(4):1871-1905, 2009.
    • (2009) Anna. Stat. , vol.37 , Issue.4 , pp. 1871-1905
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 8
    • 85161986095 scopus 로고    scopus 로고
    • Kernel measures of conditional dependence
    • MIT Press
    • K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. Kernel measures of conditional dependence. In Advances in NIPS 20, pages 489-496. MIT Press, 2008.
    • (2008) Advances in NIPS , vol.20 , pp. 489-496
    • Fukumizu, K.1    Gretton, A.2    Sun, X.3    Schölkopf, B.4
  • 12
    • 0346734143 scopus 로고    scopus 로고
    • Markov chain monte carlo without likelihoods
    • P.Marjoram, Jo.Molitor, V. Plagnol, and S. Tavare. Markov chain monte carlo without likelihoods. PNAS, 100(26):15324-15328, 2003.
    • (2003) PNAS , vol.100 , Issue.26 , pp. 15324-15328
    • Marjoram, P.1    Molitor, J.2    Plagnol, V.3    Tavare, S.4
  • 14
    • 4043092820 scopus 로고    scopus 로고
    • Nonparametric bayesian data analysis
    • P. Müller and F.A. Quintana. Nonparametric bayesian data analysis. Statistical Science, 19(1):95-110, 2004.
    • (2004) Statistical Science , vol.19 , Issue.1 , pp. 95-110
    • Müller, P.1    Quintana, F.A.2
  • 15
    • 0002369909 scopus 로고
    • Empirical choice of histograms and kernel density estimators
    • M. Rudemo. Empirical choice of histograms and kernel density estimators. Scandinavian J. Statistics, 9(2):pp. 65-78, 1982.
    • (1982) Scandinavian J. Statistics , vol.9 , Issue.2 , pp. 65-78
    • Rudemo, M.1
  • 17
    • 33846939958 scopus 로고    scopus 로고
    • Sequential monte carlo without likelihoods
    • S. A. Sisson, Y. Fan, andM.M. Tanaka. Sequential monte carlo without likelihoods. PNAS, 104(6):1760-1765, 2007.
    • (2007) PNAS , vol.104 , Issue.6 , pp. 1760-1765
    • Sisson, S.A.1    Fan, Y.2    Tanaka, M.M.3
  • 18
    • 84860645997 scopus 로고    scopus 로고
    • Nonparametric tree graphical models via kernel embeddings
    • L. Song, A. Gretton., and C. Guestrin. Nonparametric tree graphical models via kernel embeddings. In AISTATS 2010, pages 765-772, 2010.
    • (2010) AISTATS 2010 , pp. 765-772
    • Song, L.1    Gretton, A.2    Guestrin, C.3
  • 20
    • 71149099279 scopus 로고    scopus 로고
    • Hilbert space embeddings of conditional distributions with applications to dynamical systems
    • L. Song, J. Huang, A. Smola, and K. Fukumizu. Hilbert space embeddings of conditional distributions with applications to dynamical systems. Proc ICML2009, pages 961-968. 2009.
    • (2009) Proc ICML2009 , pp. 961-968
    • Song, L.1    Huang, J.2    Smola, A.3    Fukumizu, K.4
  • 21
    • 77956540831 scopus 로고    scopus 로고
    • Hilbert space embeddings of hidden Markov models
    • L. Song and S. M. Siddiqi and G. Gordon and A. Smola. Hilbert Space Embeddings of Hidden Markov Models. Proc. ICML2010, 991-998. 2010.
    • (2010) Proc. ICML2010 , pp. 991-998
    • Song, L.1    Siddiqi, S.M.2    Gordon, G.3    Smola, A.4
  • 23
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the Kernel on the consistency of support vector machines
    • I. Steinwart. On the Influence of the Kernel on the Consistency of Support Vector Machines. JMLR, 2:67-93, 2001.
    • (2001) JMLR , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 26
    • 0005765108 scopus 로고    scopus 로고
    • Monte carlo hidden markov models: Learning non-parametric models of partially observable stochastic processes
    • S. Thrun, J. Langford, and D. Fox. Monte carlo hidden markov models: Learning non-parametric models of partially observable stochastic processes. In ICML 1999, pages 415-424, 1999.
    • (1999) ICML 1999 , pp. 415-424
    • Thrun, S.1    Langford, J.2    Fox, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.