메뉴 건너뛰기




Volumn 166, Issue 2, 2001, Pages 133-155

Improved lower bounds for learning from noisy examples: An information-theoretic approach

Author keywords

Entropy; Lower bounds; Mutual information; Noisy examples; PAC learning

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; ENTROPY; THEOREM PROVING;

EID: 0035354041     PISSN: 08905401     EISSN: None     Source Type: Journal    
DOI: 10.1006/inco.2000.2919     Document Type: Article
Times cited : (4)

References (40)
  • 1
    • 0023453626 scopus 로고
    • Learning regular sets from queries and counterexamples
    • Angluin, D. (1987), Learning regular sets from queries and counterexamples, Inform. and Comput. 75(2), 87-106.
    • (1987) Inform. and Comput. , vol.75 , Issue.2 , pp. 87-106
    • Angluin, D.1
  • 2
    • 0000710299 scopus 로고
    • Queries and concept learning
    • Angluin, D. (1988), Queries and concept learning, Machine Learning 2(4), 319-342.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 319-342
    • Angluin, D.1
  • 3
    • 0031209746 scopus 로고    scopus 로고
    • Malicious omissions and errors in answers to membership queries
    • Angluin D., Krikis, M., Sloan, R., and Turán, G. (1997), Malicious omissions and errors in answers to membership queries, Machine Learning 28(2/3), 211-255.
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 211-255
    • Angluin, D.1    Krikis, M.2    Sloan, R.3    Turán, G.4
  • 4
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • Angluin, D., and Laird, P. D. (1988), Learning from noisy examples, Machine Learning 2(2), 343-370.
    • (1988) Machine Learning , vol.2 , Issue.2 , pp. 343-370
    • Angluin, D.1    Laird, P.D.2
  • 5
    • 0018454769 scopus 로고
    • Fast probabilistic algorithms for Hamiltonian circuits and matchings
    • Angluin, D., and Valiant, L. (1979), Fast probabilistic algorithms for Hamiltonian circuits and matchings, J. Comput. System Sci. 18, 155-193.
    • (1979) J. Comput. System Sci. , vol.18 , pp. 155-193
    • Angluin, D.1    Valiant, L.2
  • 6
    • 0013448883 scopus 로고    scopus 로고
    • Sample size lower bounds in PAC learning by algorithmic complexity theory
    • Apolloni, B., and Gentile, C. (1998), Sample size lower bounds in PAC learning by algorithmic complexity theory, Theoret. Comput. Sci. 209, 141-162.
    • (1998) Theoret. Comput. Sci. , vol.209 , pp. 141-162
    • Apolloni, B.1    Gentile, C.2
  • 7
    • 0013360743 scopus 로고    scopus 로고
    • On the sample complexity of noise-tolerant learning
    • Aslam, J. A., and Decatur S. E. (1996), On the sample complexity of noise-tolerant learning, Inform. Process. Lett. 57, 189-195.
    • (1996) Inform. Process. Lett. , vol.57 , pp. 189-195
    • Aslam, J.A.1    Decatur, S.E.2
  • 9
    • 85031232223 scopus 로고    scopus 로고
    • Technical Report UCSC-CRL-98-12, Baskin School of Engineering, University of California, Santa Cruz
    • Bartlett, P., and Helmbold, D. (1998), "Tracking a Drifting Concept in a Changing Environment," Technical Report UCSC-CRL-98-12, Baskin School of Engineering, University of California, Santa Cruz.
    • (1998) Tracking a Drifting Concept in a Changing Environment
    • Bartlett, P.1    Helmbold, D.2
  • 10
    • 0013454820 scopus 로고    scopus 로고
    • On the complexity of learning from drifting distributions
    • Barve, R. D., and Long, P. M. (1997), On the complexity of learning from drifting distributions, Inform. and Comput. 138 (2), 170-193.
    • (1997) Inform. and Comput. , vol.138 , Issue.2 , pp. 170-193
    • Barve, R.D.1    Long, P.M.2
  • 11
    • 0026414013 scopus 로고
    • Learnability by fixed distributions
    • Benedek, G., and Itai, A. (1991), Learnability by fixed distributions, Theoret. Comput. Sci. 86(2), 377-389.
    • (1991) Theoret. Comput. Sci. , vol.86 , Issue.2 , pp. 377-389
    • Benedek, G.1    Itai, A.2
  • 13
    • 85031224385 scopus 로고    scopus 로고
    • Sample-efficient strategies for learning in the presence of noise
    • Cesa-Bianchi, N., Dichterman, E., Fischer, P., Shamir, E., and Simon, H. U. (1997), Sample-efficient strategies for learning in the presence of noise, eCOLT Teca. Rep. 97-003 [www: http://ecolt.informatik.uni-dortmund.de/]; preliminary versions appeared in "Proceedings, 28th Symposium on Theory of Computing," pp. 141-150, and "Proceedings, 3rd European Conference on Computational Learning Theory," pp. 119-133.
    • (1997) eCOLT Teca. Rep. , vol.97 , Issue.3
    • Cesa-Bianchi, N.1    Dichterman, E.2    Fischer, P.3    Shamir, E.4    Simon, H.U.5
  • 14
    • 85031212553 scopus 로고    scopus 로고
    • "Proceedings, 3rd European Conference on Computational Learning Theory," pp. 119-133
    • Cesa-Bianchi, N., Dichterman, E., Fischer, P., Shamir, E., and Simon, H. U. (1997), Sample-efficient strategies for learning in the presence of noise, eCOLT Teca. Rep. 97-003 [www: http://ecolt.informatik.uni-dortmund.de/]; preliminary versions appeared in "Proceedings, 28th Symposium on Theory of Computing," pp. 141-150, and "Proceedings, 3rd European Conference on Computational Learning Theory," pp. 119-133.
    • Proceedings, 28th Symposium on Theory of Computing , pp. 141-150
  • 16
    • 0003046260 scopus 로고
    • General formulation of Shannon's main theorem in information theory
    • Russian
    • Dobrushin, R. L. (1959), General formulation of Shannon's main theorem in information theory, Uspekhi Mat. Nauk, 14, 3-104. [Russian]; (1963), Ameri. Math. Soc. Transl. Ser. 2 33, 323-438 [Engl. transl.].
    • (1959) Uspekhi Mat. Nauk , vol.14 , pp. 3-104
    • Dobrushin, R.L.1
  • 17
    • 0013405016 scopus 로고
    • [Engl. transl.]
    • Dobrushin, R. L. (1959), General formulation of Shannon's main theorem in information theory, Uspekhi Mat. Nauk, 14, 3-104. [Russian]; (1963), Ameri. Math. Soc. Transl. Ser. 2 33, 323-438 [Engl. transl.].
    • (1963) Ameri. Math. Soc. Transl. Ser. 2 , vol.33 , pp. 323-438
  • 18
    • 0000085854 scopus 로고
    • A course on empirical processes
    • Springer-Verlag, Berlin/New York
    • Dudley, R. M. (1984), "A Course on Empirical Processes," Lecture Notes in Mathematics, Vol. 1097, Springer-Verlag, Berlin/New York.
    • (1984) Lecture Notes in Mathematics , vol.1097
    • Dudley, R.M.1
  • 19
    • 0024739191 scopus 로고
    • A general lower bound on the number of examples needed for learning
    • Ehrenfeucht, A., Haussler D., Kearns, M., and Valiant, L. (1989), A general lower bound on the number of examples needed for learning, Inform. and Comput. 82(3), 247-261.
    • (1989) Inform. and Comput. , vol.82 , Issue.3 , pp. 247-261
    • Ehrenfeucht, A.1    Haussler, D.2    Kearns, M.3    Valiant, L.4
  • 23
    • 0028132501 scopus 로고
    • Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension
    • Haussler, D., Kearns, M., and Schapire, R. (1994), Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension, Machine Learning 14, 84-114.
    • (1994) Machine Learning , vol.14 , pp. 84-114
    • Haussler, D.1    Kearns, M.2    Schapire, R.3
  • 24
    • 43949159818 scopus 로고
    • Predicting {0, 1}-functions on randomly drawn points
    • Haussler, D., Littlestone, N., and Warmuth, M. (1994), Predicting {0, 1}-functions on randomly drawn points, Inform. and Comput. 115(2), 248-293.
    • (1994) Inform. and Comput. , vol.115 , Issue.2 , pp. 248-293
    • Haussler, D.1    Littlestone, N.2    Warmuth, M.3
  • 25
    • 0031326925 scopus 로고    scopus 로고
    • Mutual information, metric entropy, and cumulative relative entropy risk
    • Haussler, D., and Opper, M. (1997), Mutual information, metric entropy, and cumulative relative entropy risk, Ann. Statist. 25(6), 2451-2492.
    • (1997) Ann. Statist. , vol.25 , Issue.6 , pp. 2451-2492
    • Haussler, D.1    Opper, M.2
  • 28
    • 0027640858 scopus 로고
    • Learning in the presence of malicious errors
    • Kearns, M., and Li, M. (1993), Learning in the presence of malicious errors, SIAM J. Comput. 22, 807-837.
    • (1993) SIAM J. Comput. , vol.22 , pp. 807-837
    • Kearns, M.1    Li, M.2
  • 29
    • 0000624821 scopus 로고
    • ε-entropy and ε-capacity of sets in functional spaces
    • Kolmogorov, A. N., and Tihomirov, V. M. (1961), ε-entropy and ε-capacity of sets in functional spaces, Amer. Math. Soc. Transl. Ser. 17, 277-364.
    • (1961) Amer. Math. Soc. Transl. Ser. , vol.17 , pp. 277-364
    • Kolmogorov, A.N.1    Tihomirov, V.M.2
  • 32
    • 0026119624 scopus 로고
    • On learning from queries and counterexamples in the presence of noise
    • Sakakibara, K. (1991), On learning from queries and counterexamples in the presence of noise, Inform. Process. Lett. 37(5), 279-284.
    • (1991) Inform. Process. Lett. , vol.37 , Issue.5 , pp. 279-284
    • Sakakibara, K.1
  • 33
    • 0030128944 scopus 로고    scopus 로고
    • General bounds on the number of examples needed for learning probabilistic concepts
    • Simon, H. U. (1996), General bounds on the number of examples needed for learning probabilistic concepts, J. Comput. System Sci. 52(2), 239-254.
    • (1996) J. Comput. System Sci. , vol.52 , Issue.2 , pp. 239-254
    • Simon, H.U.1
  • 34
    • 0000607171 scopus 로고
    • Four types of noise in data for PAC learning
    • Sloan, R. (1995), Four types of noise in data for PAC learning, Inform. Process. Lett. 54, 157-162.
    • (1995) Inform. Process. Lett. , vol.54 , pp. 157-162
    • Sloan, R.1
  • 37
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant, L. (1984), A theory of the learnable, Comm. Assoc. Comput. Math. 27(11), 1134-1142.
    • (1984) Comm. Assoc. Comput. Math. , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.1
  • 40
    • 0029779159 scopus 로고    scopus 로고
    • Lower bounds on expected redundancy for nonparametric classes
    • Yu, B. (1996), Lower bounds on expected redundancy for nonparametric classes, IEEE Trans. Inform. Theory 42(1), 272-275.
    • (1996) IEEE Trans. Inform. Theory , vol.42 , Issue.1 , pp. 272-275
    • Yu, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.