-
2
-
-
44949114109
-
Modeling and simulating chemical reactions
-
D. Higham. Modeling and Simulating Chemical Reactions. SIAM Review, 50:347-368, 2008.
-
(2008)
SIAM Review
, vol.50
, pp. 347-368
-
-
Higham, D.1
-
4
-
-
58149142997
-
Modeling and simulating chemical reactions
-
T. Toni, D. Welch, N. Strelkova, A. Ipsen, and M.P.H. Stumpf. Modeling and Simulating Chemical Reactions. J. R. Soc. Interface, 6:187-202, 2009.
-
(2009)
J. R. Soc. Interface
, vol.6
, pp. 187-202
-
-
Toni, T.1
Welch, D.2
Strelkova, N.3
Ipsen, A.4
Stumpf, M.P.H.5
-
7
-
-
33744552752
-
For most large underdetermined systems of equations, the minimal l1-norm near-solution approximates the sparsest near-solution
-
D.L. Donoho. For most large underdetermined systems of equations, the minimal l1-norm near-solution approximates the sparsest near-solution. Communications on Pure and Applied Mathematics, 59(7):907-934, 2006.
-
(2006)
Communications on Pure and Applied Mathematics
, vol.59
, Issue.7
, pp. 907-934
-
-
Donoho, D.L.1
-
8
-
-
33646365077
-
For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
-
D.L. Donoho. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics, 59(6):797-829, 2006.
-
(2006)
Communications on Pure and Applied Mathematics
, vol.59
, Issue.6
, pp. 797-829
-
-
Donoho, D.L.1
-
9
-
-
69049086702
-
Some sharp performance bounds for least squares regression with L1 regularization
-
T. Zhang. Some sharp performance bounds for least squares regression with L1 regularization. Annals of Statistics, 37:2109-2144, 2009.
-
(2009)
Annals of Statistics
, vol.37
, pp. 2109-2144
-
-
Zhang, T.1
-
10
-
-
65749083666
-
Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso)
-
M.J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso). IEEE Trans. Information Theory, 55:2183-2202, 2009.
-
(2009)
IEEE Trans. Information Theory
, vol.55
, pp. 2183-2202
-
-
Wainwright, M.J.1
-
13
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432, 2008.
-
(2008)
Biostatistics
, vol.9
, Issue.3
, pp. 432
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
14
-
-
33744775760
-
Modeling and simulating chemical reactions
-
K. Ball, T.G. Kurtz, L. Popovic, and G. Rempala. Modeling and Simulating Chemical Reactions. Ann. Appl. Prob., 16:1925-1961, 2006.
-
(2006)
Ann. Appl. Prob
, vol.16
, pp. 1925-1961
-
-
Ball, K.1
Kurtz, T.G.2
Popovic, L.3
Rempala, G.4
-
15
-
-
34247359516
-
Parameter estimation for multiscale diffusions
-
G.A. Pavliotis and A.M. Stuart. Parameter estimation for multiscale diffusions. J. Stat. Phys., 127:741-781, 2007.
-
(2007)
J. Stat. Phys.
, vol.127
, pp. 741-781
-
-
Pavliotis, G.A.1
Stuart, A.M.2
-
19
-
-
79951750271
-
High-dimensional Ising model selection using l1-regularized logistic regression
-
P. Ravikumar, M.J.Wainwright, and J. Lafferty. High-dimensional Ising model selection using l1-regularized logistic regression. Annals of Statistics, 2008.
-
(2008)
Annals of Statistics
-
-
Ravikumar, P.1
Wainwright, M.J.2
Lafferty, J.3
|