-
1
-
-
38349120491
-
The mental representation of numerical fractions: Real or integer?
-
Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance, 33, 1410-1419.
-
(2007)
Journal of Experimental Psychology: Human Perception and Performance
, vol.33
, pp. 1410-1419
-
-
Bonato, M.1
Fabbri, S.2
Umiltà, C.3
Zorzi, M.4
-
2
-
-
85139496742
-
Transitioning from arithmetic to algebra: Interpreting literal symbols as representing natural numbers
-
(in press)
-
Christou, K. P., Vosniadou, S., (in press) Transitioning from arithmetic to algebra: Interpreting literal symbols as representing natural numbers. Mathematical Thinking and Learning
-
Mathematical Thinking and Learning
-
-
Christou, K. P.1
Vosniadou, S.2
-
3
-
-
77954045773
-
Do naïve theories ever go away?
-
M. Lovett, & P. Shah (Eds), Mahwah, NJ: Erlbaum
-
Dunbar, K., Fugelsang, J., & Stein, C. (2007). Do naïve theories ever go away? In M. Lovett, & P. Shah (Eds.), Thinking with Data: 33rd Carnegie Symposium on Cognition. Mahwah, NJ: Erlbaum.
-
(2007)
Thinking with Data: 33rd Carnegie Symposium on Cognition
-
-
Dunbar, K.1
Fugelsang, J.2
Stein, C.3
-
4
-
-
0001721873
-
Enabling constraints for cognitive development and learning: Domain-specificity and epigenesis
-
D. Kuhl & R. S. Siegler Eds), W. Damon (Gen. Ed), Handbook of child psychology (Fifth Ed). New York: John Wiley & Sons
-
Gelman, R., & Williams, E. M. (1998). Enabling constraints for cognitive development and learning: Domain-specificity and epigenesis. In D. Kuhl & R. S. Siegler (Vol. Eds.), Cognition, perception, and language, Vol 2 (pp. 575-630). W. Damon (Gen. Ed.), Handbook of child psychology (Fifth Ed.). New York: John Wiley & Sons.
-
(1998)
Cognition, perception, and language
, vol.2
, pp. 575-630
-
-
Gelman, R.1
Williams, E. M.2
-
6
-
-
49549099008
-
Parts and holes: Gaps in rational number sense in children with vs. without mathematical learning disability
-
Mazzocco, M.M.M., & Devlin, K.T. (2008). Parts and holes: Gaps in rational number sense in children with vs. without mathematical learning disability. Developmental Science. 11:5, 681-691
-
(2008)
Developmental Science
, vol.11
, Issue.5
, pp. 681-691
-
-
Mazzocco, M.M.M.1
Devlin, K.T.2
-
7
-
-
0003865802
-
-
Reston, VA: National Council of Teachers of Mathematics
-
National Council of Teachers of Mathematics (2007) Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics
-
(2007)
Principles and standards for school mathematics
-
-
-
8
-
-
15944425784
-
Teaching and learning fraction and rational numbers: The origins and implications of whole number bias
-
Ni, Y., & Zhou, Y-D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27–52.
-
(2005)
Educational Psychologist
, vol.40
, Issue.1
, pp. 27-52
-
-
Ni, Y.1
Zhou, Y-D.2
-
10
-
-
24644465554
-
Never getting to zero: Elementary school students’ understanding of the infinite divisibility of number and matter
-
Smith, C. L., Solomon, G. E. A., & Carey, S. (2005). Never getting to zero: Elementary school students’ understanding of the infinite divisibility of number and matter. Cognitive Psychology, 51, 101–140.
-
(2005)
Cognitive Psychology
, vol.51
, pp. 101-140
-
-
Smith, C. L.1
Solomon, G. E. A.2
Carey, S.3
-
11
-
-
13844292565
-
The development of student’s understanding of numerical value of fractions
-
Stafylidou, S., & Vosniadou, S. (2004). The development of student’s understanding of numerical value of fractions. Learning and Instruction, 14, 503-518.
-
(2004)
Learning and Instruction
, vol.14
, pp. 503-518
-
-
Stafylidou, S.1
Vosniadou, S.2
-
12
-
-
80052844857
-
How Many Numbers are there in a Rational Numbers Interval? Constrains, Synthetic Models and the Effect of the Number Line
-
S. Vosniadou, A. Baltas, & X. Vamvakoussi (Eds) The Netherlands: Elsevier
-
Vamvakoussi, X. & Vosniadou, S. (2007). How Many Numbers are there in a Rational Numbers Interval? Constrains, Synthetic Models and the Effect of the Number Line. In S. Vosniadou, A. Baltas, & X. Vamvakoussi (Eds.) Reframing the Conceptual Change Approach in Learning and Instruction (pp. 265-282). The Netherlands: Elsevier.
-
(2007)
Reframing the Conceptual Change Approach in Learning and Instruction
, pp. 265-282
-
-
Vamvakoussi, X.1
Vosniadou, S.2
-
13
-
-
13844264296
-
Understanding the structure of the set of rational numbers: A conceptual change approach
-
Vamvakoussi, X., & Vosniadou, S. (2010). Understanding the structure of the set of rational numbers: A conceptual change approach. Learning and Instruction, 14, 453-467.
-
(2010)
Learning and Instruction
, vol.14
, pp. 453-467
-
-
Vamvakoussi, X.1
Vosniadou, S.2
-
14
-
-
38849084775
-
The cognitive-situative divide and the problem of conceptual change
-
Vosniadou, S., (2007). The cognitive-situative divide and the problem of conceptual change, Educational Psychologist, 42(1), 55-66.
-
(2007)
Educational Psychologist
, vol.42
, Issue.1
, pp. 55-66
-
-
Vosniadou, S.1
-
16
-
-
13844265835
-
Extending the Conceptual Change Approach to Mathematics Learning and Teaching
-
L., Verschaffel and S. Vosniadou (Guest Editors)
-
Vosniadou, S. & Verschaffel, L. (2004) Extending the Conceptual Change Approach to Mathematics Learning and Teaching. In L., Verschaffel and S. Vosniadou (Guest Editors), Conceptual Change in Mathematics Learning and Teaching, Special Issue of Learning and Instruction, 14, 5, 445-451
-
(2004)
Conceptual Change in Mathematics Learning and Teaching, Special Issue of Learning and Instruction
, vol.14
, Issue.5
, pp. 445-451
-
-
Vosniadou, S.1
Verschaffel, L.2
|