-
1
-
-
85006228721
-
Efficient similarity search in sequence databases
-
David B. Lomet (Ed.). Springer-Verlag, London, UK
-
R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in sequence databases. In Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms (FODO '93), David B. Lomet (Ed.). Springer-Verlag, London, UK, pp. 69-84, 1993.
-
(1993)
Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms (FODO '93)
, pp. 69-84
-
-
Agrawal, R.1
Faloutsos, C.2
Swami, A.N.3
-
2
-
-
0001865847
-
Querying shapes of histories
-
Zurich, Switzerland, September 11-15
-
R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait. Querying shapes of histories. In Proceedings of the 21st International Conference on Very Large Databases. Zurich, Switzerland. pp. 502-514, September 11-15, 1995.
-
(1995)
Proceedings of the 21st International Conference on Very Large Databases
, pp. 502-514
-
-
Agrawal, R.1
Psaila, G.2
Wimmers, E.L.3
Zait, M.4
-
3
-
-
0042329616
-
A neural network face recognition system
-
M. J. Aitkenhead and A. J. S. McDonald, A neural network face recognition system, Engineering Applications of Artificial Intelligence, 16(3), 167-176, 2003.
-
(2003)
Engineering Applications of Artificial Intelligence
, vol.16
, Issue.3
, pp. 167-176
-
-
Aitkenhead, M.J.1
McDonald, A.J.S.2
-
4
-
-
18044365673
-
The MACHO project: Microlensing detection efficiency
-
C. Alcock, R. A. Allsman, D. R. Alves, T. S. Axelrod, A. C. Becker, D. P. Bennett, K. H. Cook et al. The MACHO project: Microlensing detection efficiency. ApJS, 136, 439, 2001.
-
(2001)
ApJS
, vol.136
, pp. 439
-
-
Alcock, C.1
Allsman, R.A.2
Alves, D.R.3
Axelrod, T.S.4
Becker, A.C.5
Bennett, D.P.6
Cook, K.H.7
-
5
-
-
33748100382
-
RT-UNNID: A practical solution to real-time network-based intrusion detection using unsupervised neural networks
-
M. Amini, R. Jalili, and H. R. Shahriari. RT-UNNID: A practical solution to real-time network-based intrusion detection using unsupervised neural networks, Computers and Security, 25(6), 459-468, 2006.
-
(2006)
Computers and Security
, vol.25
, Issue.6
, pp. 459-468
-
-
Amini, M.1
Jalili, R.2
Shahriari, H.R.3
-
7
-
-
55549102678
-
Towards a real-time transient classification engine
-
J. S. Bloom, D. L. Starr, N. R. Butler, P. Nugent, M. Rischard, D. Eads, and D. Poznanski. Towards a real-time transient classification engine. Astronomische Nachrichten, 329(3), 284-287, 2008.
-
(2008)
Astronomische Nachrichten
, vol.329
, Issue.3
, pp. 284-287
-
-
Bloom, J.S.1
Starr, D.L.2
Butler, N.R.3
Nugent, P.4
Rischard, M.5
Eads, D.6
Poznanski, D.7
-
8
-
-
55549084569
-
A machine learning classification broker for the LSST transient database
-
K. D. Borne. A machine learning classification broker for the LSST transient database. Astronomische Nachrichten, 329, 255, 2008.
-
(2008)
Astronomische Nachrichten
, vol.329
, pp. 255
-
-
Borne, K.D.1
-
9
-
-
84953806973
-
Scaling clustering algorithms to large databases
-
New York, NY, August 27-31
-
P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to large databases. In Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining. New York, NY, pp. 9-15, August 27-31, 1998.
-
(1998)
Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining
, pp. 9-15
-
-
Bradley, P.1
Fayyad, U.2
Reina, C.3
-
10
-
-
42549095534
-
Light and motion in SDSS Stripe 82: The catalogues
-
D. M. Bramich, S. Vidrih, L. Wyrzykowski, J. A. Munn, H. Lin, N. W. Evans, M. C. Smith et al. Light and motion in SDSS Stripe 82: The catalogues. Monthly Notices of the Royal Astronomical Society, 386, 887-902, 2008.
-
(2008)
Monthly Notices of the Royal Astronomical Society
, vol.386
, pp. 887-902
-
-
Bramich, D.M.1
Vidrih, S.2
Wyrzykowski, L.3
Munn, J.A.4
Lin, H.5
Evans, N.W.6
Smith, M.C.7
-
11
-
-
79951730065
-
iSAX 2.0: Indexing and mining one billion time series, ICDM
-
A. Camerra, T. Palpanas, J. Shieh, and E. Keogh, iSAX 2.0: Indexing and mining one billion time series, ICDM, IEEE International Conference on Data Mining, pp. 58-67, 2010.
-
(2010)
IEEE International Conference on Data Mining
, pp. 58-67
-
-
Camerra, A.1
Palpanas, T.2
Shieh, J.3
Keogh, E.4
-
12
-
-
80155203953
-
Multiresolution motif discovery in time series
-
N. Castro and P. J. Azevedo. Multiresolution motif discovery in time series. SDM, 665-676, 2010.
-
(2010)
SDM
, pp. 665-676
-
-
Castro, N.1
Azevedo, P.J.2
-
14
-
-
78649417351
-
-
CS TechnicalReport 09-004, January, Computer Science Department, University of Minnesota
-
V. Chandola, D. Cheboli, and V. Kumar. Detecting Anomalies in a Timeseries Database. CS TechnicalReport 09-004, January 2009, Computer Science Department, University of Minnesota.
-
(2009)
Detecting Anomalies in a Timeseries Database
-
-
Chandola, V.1
Cheboli, D.2
Kumar, V.3
-
15
-
-
40449126756
-
On the time series support vector machine using dynamic time warping kernel for brain activity classification
-
W. A. Chaovalitwongse and P. M. Pardalos. On the time series support vector machine using dynamic time warping kernel for brain activity classification. Cybernetics and Sys. Anal., 44(1), 125-138, 2008.
-
(2008)
Cybernetics and Sys. Anal.
, vol.44
, Issue.1
, pp. 125-138
-
-
Chaovalitwongse, W.A.1
Pardalos, P.M.2
-
17
-
-
29844433160
-
-
Ph.D. Dissertation. University of Waterloo, Waterloo, Ont., Canada, Canada, AAINR03008
-
L. Chen. Similarity search over time series and trajectory data. Ph.D. Dissertation. University of Waterloo, Waterloo, Ont., Canada, Canada, AAINR03008, 2005.
-
(2005)
Similarity search over time series and trajectory data
-
-
Chen, L.1
-
19
-
-
52649179212
-
Probabilistic discovery of time series motifs
-
Washington, DC, August 24-27, KDD '03. ACM Press, New York
-
B. Chiu, E. Keogh, and S. Lonardi. Probabilistic discovery of time series motifs. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Washington, DC, August 24-27, 2003). KDD '03. ACM Press, New York, pp. 493-498.
-
(2003)
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 493-498
-
-
Chiu, B.1
Keogh, E.2
Lonardi, S.3
-
20
-
-
2442585353
-
ANNz: Estimating photometric redshifts using artificial neural networks
-
A. A. Collister and O. Lahav. ANNz: Estimating photometric redshifts using artificial neural networks, Publ. Astron. Soc. Pac. 116:345-351, 2004.
-
(2004)
Publ. Astron. Soc. Pac.
, vol.116
, pp. 345-351
-
-
Collister, A.A.1
Lahav, O.2
-
21
-
-
0034592773
-
Hancock: A language for extracting signatures fromdata streams
-
C. Cortes, K. Fisher, D. Pregibon, and A. Rogers. Hancock: A language for extracting signatures fromdata streams. InACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 9-17, 2000.
-
(2000)
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 9-17
-
-
Cortes, C.1
Fisher, K.2
Pregibon, D.3
Rogers, A.4
-
22
-
-
0028516612
-
Speeding up two string-matching algorithms
-
M. Crochemore, A. Czumaj, L. Gasjeniec, S. Jarominek, T. Lecroq, W. Plandowski, and W. Rytter. Speeding up two string-matching algorithms. Algorithmica, 12, 247-267, 1994.
-
(1994)
Algorithmica
, vol.12
, pp. 247-267
-
-
Crochemore, M.1
Czumaj, A.2
Gasjeniec, L.3
Jarominek, S.4
Lecroq, T.5
Plandowski, W.6
Rytter, W.7
-
24
-
-
77949491279
-
Speech recognition with artificial neural networks
-
G. Dede and M. H. Sazli. Speech recognition with artificial neural networks. Digital Signal Processing, 20(3), 763-768, 2010.
-
(2010)
Digital Signal Processing
, vol.20
, Issue.3
, pp. 763-768
-
-
Dede, G.1
Sazli, M.H.2
-
25
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), pp. 1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
26
-
-
0030703331
-
Learning to recognize time series: Combining ARMA models with memory-based learning
-
K. Deng, A. Moore, and M. Nechyba. Learning to recognize time series: Combining ARMA models with memory-based learning. IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1, 246-250, 1997.
-
(1997)
IEEE International Symposium on Computational Intelligence in Robotics and Automation
, vol.1
, pp. 246-250
-
-
Deng, K.1
Moore, A.2
Nechyba, M.3
-
27
-
-
77949491219
-
Gujarati handwritten numeral optical character reorganization through neural network
-
A. A. Desai. Gujarati handwritten numeral optical character reorganization through neural network. Pattern Recognition, 43(7), 2582-2589, 2010.
-
(2010)
Pattern Recognition
, vol.43
, Issue.7
, pp. 2582-2589
-
-
Desai, A.A.1
-
28
-
-
84867136666
-
Querying and mining of time series data: Experimental comparison of representations and distance measures
-
H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and mining of time series data: Experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment, 1(2), 1542-1552, 2008.
-
(2008)
Proceedings of the VLDB Endowment
, vol.1
, Issue.2
, pp. 1542-1552
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
Wang, X.4
Keogh, E.5
-
29
-
-
0003922190
-
-
2nd Edition, Wiley-Interscience, New York, NY
-
R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2nd Edition, Wiley-Interscience, New York, NY.
-
Pattern Classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
30
-
-
0036993130
-
Genetic algorithms and support vector machines for time series classification
-
July
-
D. Eads, D. Hill, S. Davis, S. Perkins, J. Ma, R. Porter, and J. Theiler. Genetic algorithms and support vector machines for time series classification. Proc. SPIE 4787, pp. 74-85, July, 2002.
-
(2002)
Proc. SPIE
, vol.4787
, pp. 74-85
-
-
Eads, D.1
Hill, D.2
Davis, S.3
Perkins, S.4
Ma, J.5
Porter, R.6
Theiler, J.7
-
31
-
-
0028447023
-
Fast subsequence matching in time-series databases
-
C. Faloutsos, M. Ranganathan, and Y. Manolopulos. Fast subsequence matching in time-series databases. SIGMOD Record, 23, 419-429, 1994.
-
(1994)
SIGMOD Record
, vol.23
, pp. 419-429
-
-
Faloutsos, C.1
Ranganathan, M.2
Manolopulos, Y.3
-
33
-
-
0034592914
-
Deformable Markov model templates for time-series pattern matching
-
Boston, MA, August 20-23
-
X. Ge and P. Smyth. Deformable Markov model templates for time-series pattern matching. In Proceedings of the 6th ACM SIGKDD. Boston, MA, pp. 81-90, August 20-23, 2000.
-
(2000)
Proceedings of the 6th ACM SIGKDD
, pp. 81-90
-
-
Ge, X.1
Smyth, P.2
-
35
-
-
84874033115
-
PhysioBank, PhysioToolkit, and PhysioNet: Circulation, 101(23), e215-e220
-
A. L. Goldberger, L. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: Circulation, 101(23), e215-e220. Discovery, 1(3), 1997.
-
(1997)
Discovery
, vol.1
, Issue.3
-
-
Goldberger, A.L.1
Amaral, L.2
Glass, L.3
Hausdorff, J.M.4
Ivanov, P.C.5
Mark, R.G.6
Mietus, J.E.7
Moody, G.B.8
Peng, C.K.9
Stanley, H.E.10
-
37
-
-
33750298296
-
Adaptive segmentation-based symbolic representation of time series for better modeling and lower bounding distance measures
-
Berlin, Germany, September 18-22
-
B. Hugueney. Adaptive segmentation-based symbolic representation of time series for better modeling and lower bounding distance measures. In Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases. Berlin, Germany, pp. 545-552, September 18-22, 2006.
-
(2006)
Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases
, pp. 545-552
-
-
Hugueney, B.1
-
39
-
-
10444228900
-
Pan-STARRS: A wide-field optical survey telescope array
-
N. Kaiser. Pan-STARRS: A wide-field optical survey telescope array. Proceedings of the SPIE, 5489, 11-22, 2004.
-
(2004)
Proceedings of the SPIE
, vol.5489
, pp. 11-22
-
-
Kaiser, N.1
-
40
-
-
67749108627
-
Heartbeat time series classification with support vector machines
-
A. Kampouraki, G. Manis, and C. Nikou. Heartbeat time series classification with support vector machines. IEEETransactions on InformationTechnology in Biomedicine, 13(4), 512-518, 2009.
-
(2009)
IEEETransactions on InformationTechnology in Biomedicine
, vol.13
, Issue.4
, pp. 512-518
-
-
Kampouraki, A.1
Manis, G.2
Nikou, C.3
-
41
-
-
78149299418
-
Distance measures for effective clustering of ARIMA time-series
-
San Jose, CA, November 29-December 2
-
K. Kalpakis, D. Gada, and V. Puttagunta. Distance measures for effective clustering of ARIMA time-series. In Proceedings of the 2001 IEEE International Conference on Data Mining. San Jose, CA, pp. 273-280, November 29-December 2, 2001.
-
(2001)
Proceedings of the 2001 IEEE International Conference on Data Mining
, pp. 273-280
-
-
Kalpakis, K.1
Gada, D.2
Puttagunta, V.3
-
42
-
-
85150810448
-
An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback
-
New York, NY, August 27-31
-
E. Keogh and M. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In Proceedings of the 4th International Conference on Knowledge Discovery and DataMining. New York, NY, pp. 239-241, August 27-31, 1998.
-
(1998)
Proceedings of the 4th International Conference on Knowledge Discovery and DataMining
, pp. 239-241
-
-
Keogh, E.1
Pazzani, M.2
-
44
-
-
0034832364
-
Locally adaptive dimensionality reduction for indexing large time series databases
-
Santa Barbara, May 21-24
-
E. Keogh, K. Chakrabarti, and M. Pazzani. Locally adaptive dimensionality reduction for indexing large time series databases. In Proceedings of ACM SIGMOD Conference on Management of Data. Santa Barbara, pp. 151-162, May 21-24, 2001.
-
(2001)
Proceedings of ACM SIGMOD Conference on Management of Data
, pp. 151-162
-
-
Keogh, E.1
Chakrabarti, K.2
Pazzani, M.3
-
47
-
-
0141463039
-
Finding surprising patterns in a time series database in linear time and space
-
Edmonton, Alberta, Canada, July 23-26
-
E. Keogh, S. Lonardi, and B. Chiu. Finding surprising patterns in a time series database in linear time and space. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Alberta, Canada, pp. 550-556, July 23-26, 2002.
-
(2002)
Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 550-556
-
-
Keogh, E.1
Lonardi, S.2
Chiu, B.3
-
48
-
-
10644281769
-
Towards parameter-free data mining
-
Seattle, WA, USA, KDD’04, August 22-25
-
E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free data mining. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, WA, USA, KDD’04, August 22-25, 2004.
-
(2004)
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
-
-
Keogh, E.1
Lonardi, S.2
Ratanamahatana, C.A.3
-
50
-
-
34548547034
-
HOT SAX: Efficiently finding the most unusual time series subsequence
-
Houston, TX, November 27-30
-
E. Keogh, J. Lin, and A. W. Fu. HOT SAX: Efficiently finding the most unusual time series subsequence. In Proceedings of the 5th IEEE International Conference on Data Mining. Houston, TX, pp. 226-233, November 27-30, 2005.
-
(2005)
Proceedings of the 5th IEEE International Conference on Data Mining
, pp. 226-233
-
-
Keogh, E.1
Lin, J.2
Fu, A.W.3
-
52
-
-
34147132946
-
Finding the most unusual time series subsequence: Algorithms and applications
-
Springer-Verlag
-
E. Keogh, J. Lin, and A. Fu. Finding the most unusual time series subsequence: Algorithms and applications. Knowledge and Information Systems (KAIS). Springer-Verlag, 2006.
-
(2006)
Knowledge and Information Systems (KAIS)
-
-
Keogh, E.1
Lin, J.2
Fu, A.3
-
53
-
-
40649122254
-
Evolutionary ensemble of diverse artificial neural networks using speciation
-
Progress in Modeling, Theory, and Application of Computational Intelligence-15th European Symposium on Artificial Neural Networks 2007, 15th European Symposium on Artificial Neural Networks 2007, March
-
K-J. Kim and S-B. Cho. Evolutionary ensemble of diverse artificial neural networks using speciation. Neurocomputing, 71(7-9), Progress in Modeling, Theory, and Application of Computational Intelligence-15th European Symposium on Artificial Neural Networks 2007, 15th European Symposium on Artificial Neural Networks 2007, pp. 1604-1618, March 2008.
-
(2008)
Neurocomputing
, vol.71
, Issue.7-9
, pp. 1604-1618
-
-
Kim, K.-J.1
Cho, S.-B.2
-
54
-
-
34249865363
-
Reducing uncertainties in neural network Jacobians and improving accuracy of neural network emulations with NN ensemble approaches
-
Computational Intelligence in Earth and Environmental Sciences
-
V. M. Krasnopolsky. Reducing uncertainties in neural network Jacobians and improving accuracy of neural network emulations with NN ensemble approaches, Neural Networks 20(4), Computational Intelligence in Earth and Environmental Sciences, 454-461, 2007.
-
(2007)
Neural Networks
, vol.20
, Issue.4
, pp. 454-461
-
-
Krasnopolsky, V.M.1
-
55
-
-
0025320805
-
An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences
-
Lawrence, C. and Reilly, A. An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences. Proteins, 7, 41-51, 1990.
-
(1990)
Proteins
, vol.7
, pp. 41-51
-
-
Lawrence, C.1
Reilly, A.2
-
57
-
-
24044470614
-
Clustering of time series data-A survey
-
T. W. Liao. Clustering of time series data-A survey. Pattern Recognition, 38(11), 1857-1874, 2005.
-
(2005)
Pattern Recognition
, vol.38
, Issue.11
, pp. 1857-1874
-
-
Liao, T.W.1
-
58
-
-
8344241451
-
-
Edmonton, Alberta, Canada
-
J. Lin, E. Keogh, P. Patel, and S. Lonardi. Finding Motifs in Time Series, the 2nd Workshop on Temporal Data Mining, the 8th ACM International Conference on Knowledge Discovery and Data Mining. Edmonton, Alberta, Canada, pp. 53-68, 2002.
-
(2002)
Finding Motifs in Time Series, the 2nd Workshop on Temporal Data Mining, the 8th ACM International Conference on Knowledge Discovery and Data Mining
, pp. 53-68
-
-
Lin, J.1
Keogh, E.2
Patel, P.3
Lonardi, S.4
-
60
-
-
34548093287
-
Stefano lonardi: Experiencing SAX: A novel symbolic representation of time series
-
J. Lin, E. J. Keogh, and L. Wei. Stefano lonardi: Experiencing SAX: A novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2), 107-144, 2007.
-
(2007)
Data Mining and Knowledge Discovery
, vol.15
, Issue.2
, pp. 107-144
-
-
Lin, J.1
Keogh, E.J.2
Wei, L.3
-
62
-
-
0023331258
-
An introduction to computing with neural nets
-
R. Lippmann. An introduction to computing with neural nets. ASSPMagazine, IEEE, 4(2), 4-22, 1987.
-
(1987)
ASSPMagazine, IEEE
, vol.4
, Issue.2
, pp. 4-22
-
-
Lippmann, R.1
-
63
-
-
84890514466
-
New time series data representation ESAX for financial applications
-
Atlanta, GA, April 3-8
-
B. Lkhagva, Y. Suzuki, and K. Kawagoe. New time series data representation ESAX for financial applications. In Proceedings of the 22nd International Conference on Data EngineeringWorkshops. Atlanta, GA, p. 115, April 3-8, 2006.
-
(2006)
Proceedings of the 22nd International Conference on Data EngineeringWorkshops
, pp. 115
-
-
Lkhagva, B.1
Suzuki, Y.2
Kawagoe, K.3
-
64
-
-
85138364667
-
-
LSST Science Book, version 2.0, arXiv:0912.0201
-
LSST Science Collaborations and LSST Project, LSST Science Book, version 2.0, arXiv:0912.0201, http://www.lsst.org/lsst/scibook, 2009.
-
(2009)
-
-
-
65
-
-
62249218289
-
Time warp edit distance with stiffness adjustment for time series matching
-
P. Marteau. Time warp edit distance with stiffness adjustment for time series matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 306-318, 2009.
-
(2009)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.31
, Issue.2
, pp. 306-318
-
-
Marteau, P.1
-
66
-
-
78651352893
-
Identifying predictive multi-dimensional time series motifs: An application to severe weather prediction
-
A. McGovern, D. H. Rosendahl, R. A. Brown, and K. K. Droegemeier. Identifying predictive multi-dimensional time series motifs: An application to severe weather prediction. Data Mining and Knowledge Discovery, 22(1), 232-258, 2011.
-
(2011)
Data Mining and Knowledge Discovery
, vol.22
, Issue.1
, pp. 232-258
-
-
McGovern, A.1
Rosendahl, D.H.2
Brown, R.A.3
Droegemeier, K.K.4
-
67
-
-
0001457509
-
Some methods for classification and analysis of multivariate observation
-
L. Le Cam and J. Neyman (Eds.), University of California Press, Berkeley, CA
-
J. McQueen, Some methods for classification and analysis of multivariate observation. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, L. Le Cam and J. Neyman (Eds.), University of California Press, Berkeley, CA. Vol. 1, pp. 281-297.
-
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability
, vol.1
, pp. 281-297
-
-
McQueen, J.1
-
68
-
-
54449087782
-
Clustering and co-evolution to construct neural network ensembles: An experimental study
-
F. L. Minku and Teresa B. Ludermir. Clustering and co-evolution to construct neural network ensembles: An experimental study. Neural Networks, 21(9), 2008.
-
(2008)
Neural Networks
, vol.21
, Issue.9
-
-
Minku, F.L.1
Ludermir, T.B.2
-
69
-
-
77956255457
-
Activity discovery: Sparse motifs from multivariate time series
-
Snowbird, Utah, April 4-7
-
D. Minnen, T. Starner, I. Essa, and C. Isbell. Activity discovery: sparse motifs from multivariate time series. Snowbird Learning Workshop, Snowbird, Utah, April 4-7, 2006.
-
(2006)
Snowbird Learning Workshop
-
-
Minnen, D.1
Starner, T.2
Essa, I.3
Isbell, C.4
-
70
-
-
36348977475
-
Discovering multivariate motifs using subsequence density estimation and greedy mixture learning
-
ancouver, B.C., July 22-26
-
D. Minnen, C. L. Isbell, I. Essa, and T. Starner. Discovering multivariate motifs using subsequence density estimation and greedy mixture learning. Twenty-Second Conf. on Artificial Intelligence (AAAI-07), Vancouver, B.C., July 22-26, 2007.
-
(2007)
Twenty-Second Conf. on Artificial Intelligence (AAAI-07)
-
-
Minnen, D.1
Isbell, C.L.2
Essa, I.3
Starner, T.4
-
72
-
-
72849113577
-
Exact discovery of time series motifs
-
Sparks, NV, April 30-May 2
-
A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B. Westover. Exact discovery of time series motifs. In Proceedings of the 2009 SIAM International Conference on Data Mining (SDM09), Sparks, NV, April 30-May 2, 2009.
-
(2009)
Proceedings of the 2009 SIAM International Conference on Data Mining (SDM09)
-
-
Mueen, A.1
Keogh, E.2
Zhu, Q.3
Cash, S.4
Westover, B.5
-
74
-
-
80052259039
-
Behavior extraction from a series of obObserved Robot motion
-
Nagoya, Japan, June
-
K. Murakami, Y. Yano, S. Doki, and S. Okuma. Behavior extraction from a series of obObserved Robot motion. In Proceedings of JSME Conference on Robotics and Mechatronics. Nagoya, Japan, June, 2004.
-
(2004)
Proceedings of JSME Conference on Robotics and Mechatronics
-
-
Murakami, K.1
Yano, Y.2
Doki, S.3
Okuma, S.4
-
75
-
-
33744973448
-
Feature-based classification of time-series data
-
N. Mastorakis and S. D. Nikolopoulos (Eds.), Nova Science Publishers, Commack, NY
-
A. Nanopoulos, R. Alcock, and Y. Manolopoulos. Feature-based classification of time-series data. In Information Processing and Technology, N. Mastorakis and S. D. Nikolopoulos (Eds.), Nova Science Publishers, Commack, NY, 49-61, 2001.
-
(2001)
Information Processing and Technology
, pp. 49-61
-
-
Nanopoulos, A.1
Alcock, R.2
Manolopoulos, Y.3
-
79
-
-
34548059039
-
Time signature to detect multi-headed stealthy attack tools
-
Baltimore, MD, June 25-30
-
F. Pouget, G. Urvoy-Keller, and M. Dacier. Time signature to detect multi-headed stealthy attack tools. In Proceedings of the 18th Annual FIRST Conference. Baltimore, MD, June 25-30, 2006.
-
(2006)
Proceedings of the 18th Annual FIRST Conference
-
-
Pouget, F.1
Urvoy-Keller, G.2
Dacier, M.3
-
80
-
-
84879888269
-
Time-series classification in many intrinsic dimensions
-
M. Radovanovic, A. Nanopoulos, and M. Ivanovic. Time-series classification in many intrinsic dimensions. SDM, 677-688, 2010.
-
(2010)
SDM
, pp. 677-688
-
-
Radovanovic, M.1
Nanopoulos, A.2
Ivanovic, M.3
-
81
-
-
2942525700
-
Making time-series classification more accurate using learned constraints
-
Lake Buena Vista, FL, April 22-24, 2004
-
C. A. Ratanamahatana and E. Keogh. Making time-series classification more accurate using learned constraints. In Proceedings of SIAM International Conference on Data Mining (SDM '04), Lake Buena Vista, FL, April 22-24, 2004, pp. 11-22, 2004.
-
(2004)
Proceedings of SIAM International Conference on Data Mining (SDM '04)
, pp. 11-22
-
-
Ratanamahatana, C.A.1
Keogh, E.2
-
82
-
-
71449108289
-
Exploring the optical transient sky with the palomar transient factory
-
A. Rau et al. Exploring the optical transient sky with the palomar transient factory. Publications of the Astronomical Society of the Pacific, 886, 1334-1351, 2009.
-
(2009)
Publications of the Astronomical Society of the Pacific
, vol.886
, pp. 1334-1351
-
-
Rau, A.1
-
83
-
-
60349127820
-
Finding anomalous periodic time series
-
U. Rebbapragada, P. Protopapas, C. E. Brodley, and C. R. Alcock. Finding anomalous periodic time series. Machine Learning, 74(3), 281-313, 2009.
-
(2009)
Machine Learning
, vol.74
, Issue.3
, pp. 281-313
-
-
Rebbapragada, U.1
Protopapas, P.2
Brodley, C.E.3
Alcock, C.R.4
-
84
-
-
22544442515
-
Support vector machines of intervalbased features for time series classification
-
J. J. Rodríguez, C. J. Alonso, and J. A. Maestro. Support vector machines of intervalbased features for time series classification. Knowledge-Based Systems, 18(4-5), 171-178, 2005.
-
(2005)
Knowledge-Based Systems
, vol.18
, Issue.4-5
, pp. 171-178
-
-
Rodríguez, J.J.1
Alonso, C.J.2
Maestro, J.A.3
-
86
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408, 1958.
-
(1958)
Psychological Review
, vol.65
, Issue.6
, pp. 386-408
-
-
Rosenblatt, F.1
-
87
-
-
0016572913
-
A vector space model for automatic indexing
-
G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commun. ACM, 19(11), 613-620, 1975.
-
(1975)
Commun. ACM
, vol.19
, Issue.11
, pp. 613-620
-
-
Salton, G.1
Wong, A.2
Yang, C.S.3
-
88
-
-
65449164304
-
iSAX: Indexing and mining terabyte sized time series
-
ACM, New York, NY, USA
-
J. Shieh and E. Keogh. iSAX: Indexing and mining terabyte sized time series. In Proceedings of the 14thACMSIGKDDInternationalConference onKnowledgeDiscovery and Data Mining (KDD '08). ACM, New York, NY, USA, 623-631, 2008.
-
(2008)
Proceedings of the 14thACMSIGKDDInternationalConference onKnowledgeDiscovery and Data Mining (KDD '08)
, pp. 623-631
-
-
Shieh, J.1
Keogh, E.2
-
90
-
-
18444365004
-
The optical gravitational lensing experiment. Internet Access to the OGLE Photometry Data Set: OGLE-II BVI maps and I-band data
-
M. K. Szymanski. The optical gravitational lensing experiment. Internet Access to the OGLE Photometry Data Set: OGLE-II BVI maps and I-band data. Acta Astronomica, 55, 43-57, 2005.
-
(2005)
Acta Astronomica
, vol.55
, pp. 43-57
-
-
Szymanski, M.K.1
-
91
-
-
50949085018
-
Discovering original motifs with different lengths from time series
-
H. Tang and S. S. Liao. Discovering original motifs with different lengths from time series. Knowlege-Based Systems, 21(7), 666-671, 2008.
-
(2008)
Knowlege-Based Systems
, vol.21
, Issue.7
, pp. 666-671
-
-
Tang, H.1
Liao, S.S.2
-
92
-
-
85138415161
-
Estimating the values of function at given points
-
Wiley-Interscience, New York
-
V. Vapnik. Estimating the values of function at given points. Statistical Learning Theory, Wiley-Interscience, New York, 1998.
-
(1998)
Statistical Learning Theory
-
-
Vapnik, V.1
-
94
-
-
33749012790
-
Characteristic-based clustering for time series data
-
X. Wang, K. Smith, and R. Hyndman. Characteristic-based clustering for time series data. Data Mining and Knowledge Discovery, 13(3), 335-364, 2006.
-
(2006)
Data Mining and Knowledge Discovery
, vol.13
, Issue.3
, pp. 335-364
-
-
Wang, X.1
Smith, K.2
Hyndman, R.3
-
95
-
-
68849114521
-
Photometric redshifts of galaxies from SDSS and 2MASS
-
T. Wang, J.-S. Huang, and Q.-S. Gu. Photometric redshifts of galaxies from SDSS and 2MASS. Research in Astronomy and Astrophysics, 9(4), 390-400, 2009.
-
(2009)
Research in Astronomy and Astrophysics
, vol.9
, Issue.4
, pp. 390-400
-
-
Wang, T.1
Huang, J.-S.2
Gu, Q.-S.3
-
96
-
-
33749571730
-
Semi-supervised time series classification
-
ACM, New York, NY, USA
-
L. Wei and E. Keogh. Semi-supervised time series classification. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '06). ACM, New York, NY, USA, pp. 748-753, 2006.
-
(2006)
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '06)
, pp. 748-753
-
-
Wei, L.1
Keogh, E.2
-
97
-
-
56749152114
-
Disk aware discord discovery: Finding unusual time series in terabyte sized datasets
-
November, 2008
-
Dragomir Yankov, Eamonn Keogh, and Umaa Rebbapragada. 2008. Disk aware discord discovery: finding unusual time series in terabyte sized datasets. Knowledge and Information Systems 17, 241-262, November 2008.
-
(2008)
Knowledge and Information Systems
, vol.17
, pp. 241-262
-
-
Yankov, D.1
Keogh, E.2
Rebbapragada, U.3
-
99
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Z-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 137(1-2), 239-263, 2002.
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
-
100
-
-
33745456231
-
-
Technical Report, no. 1530, Computer Sciences, University of Wisconsin-Madison
-
X. Zhu. Semi-supervised learning literature survey. Technical Report, no. 1530, Computer Sciences, University of Wisconsin-Madison, 2005.
-
(2005)
Semi-supervised learning literature survey
-
-
Zhu, X.1
|