메뉴 건너뛰기




Volumn , Issue , 2012, Pages 617-645

Pattern Recognition in Time Series

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85138378442     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b11822-22     Document Type: Chapter
Times cited : (65)

References (100)
  • 5
    • 33748100382 scopus 로고    scopus 로고
    • RT-UNNID: A practical solution to real-time network-based intrusion detection using unsupervised neural networks
    • M. Amini, R. Jalili, and H. R. Shahriari. RT-UNNID: A practical solution to real-time network-based intrusion detection using unsupervised neural networks, Computers and Security, 25(6), 459-468, 2006.
    • (2006) Computers and Security , vol.25 , Issue.6 , pp. 459-468
    • Amini, M.1    Jalili, R.2    Shahriari, H.R.3
  • 8
    • 55549084569 scopus 로고    scopus 로고
    • A machine learning classification broker for the LSST transient database
    • K. D. Borne. A machine learning classification broker for the LSST transient database. Astronomische Nachrichten, 329, 255, 2008.
    • (2008) Astronomische Nachrichten , vol.329 , pp. 255
    • Borne, K.D.1
  • 12
    • 80155203953 scopus 로고    scopus 로고
    • Multiresolution motif discovery in time series
    • N. Castro and P. J. Azevedo. Multiresolution motif discovery in time series. SDM, 665-676, 2010.
    • (2010) SDM , pp. 665-676
    • Castro, N.1    Azevedo, P.J.2
  • 15
    • 40449126756 scopus 로고    scopus 로고
    • On the time series support vector machine using dynamic time warping kernel for brain activity classification
    • W. A. Chaovalitwongse and P. M. Pardalos. On the time series support vector machine using dynamic time warping kernel for brain activity classification. Cybernetics and Sys. Anal., 44(1), 125-138, 2008.
    • (2008) Cybernetics and Sys. Anal. , vol.44 , Issue.1 , pp. 125-138
    • Chaovalitwongse, W.A.1    Pardalos, P.M.2
  • 17
    • 29844433160 scopus 로고    scopus 로고
    • Ph.D. Dissertation. University of Waterloo, Waterloo, Ont., Canada, Canada, AAINR03008
    • L. Chen. Similarity search over time series and trajectory data. Ph.D. Dissertation. University of Waterloo, Waterloo, Ont., Canada, Canada, AAINR03008, 2005.
    • (2005) Similarity search over time series and trajectory data
    • Chen, L.1
  • 20
    • 2442585353 scopus 로고    scopus 로고
    • ANNz: Estimating photometric redshifts using artificial neural networks
    • A. A. Collister and O. Lahav. ANNz: Estimating photometric redshifts using artificial neural networks, Publ. Astron. Soc. Pac. 116:345-351, 2004.
    • (2004) Publ. Astron. Soc. Pac. , vol.116 , pp. 345-351
    • Collister, A.A.1    Lahav, O.2
  • 24
    • 77949491279 scopus 로고    scopus 로고
    • Speech recognition with artificial neural networks
    • G. Dede and M. H. Sazli. Speech recognition with artificial neural networks. Digital Signal Processing, 20(3), 763-768, 2010.
    • (2010) Digital Signal Processing , vol.20 , Issue.3 , pp. 763-768
    • Dede, G.1    Sazli, M.H.2
  • 27
    • 77949491219 scopus 로고    scopus 로고
    • Gujarati handwritten numeral optical character reorganization through neural network
    • A. A. Desai. Gujarati handwritten numeral optical character reorganization through neural network. Pattern Recognition, 43(7), 2582-2589, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.7 , pp. 2582-2589
    • Desai, A.A.1
  • 28
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and mining of time series data: Experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment, 1(2), 1542-1552, 2008.
    • (2008) Proceedings of the VLDB Endowment , vol.1 , Issue.2 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 30
    • 0036993130 scopus 로고    scopus 로고
    • Genetic algorithms and support vector machines for time series classification
    • July
    • D. Eads, D. Hill, S. Davis, S. Perkins, J. Ma, R. Porter, and J. Theiler. Genetic algorithms and support vector machines for time series classification. Proc. SPIE 4787, pp. 74-85, July, 2002.
    • (2002) Proc. SPIE , vol.4787 , pp. 74-85
    • Eads, D.1    Hill, D.2    Davis, S.3    Perkins, S.4    Ma, J.5    Porter, R.6    Theiler, J.7
  • 31
    • 0028447023 scopus 로고
    • Fast subsequence matching in time-series databases
    • C. Faloutsos, M. Ranganathan, and Y. Manolopulos. Fast subsequence matching in time-series databases. SIGMOD Record, 23, 419-429, 1994.
    • (1994) SIGMOD Record , vol.23 , pp. 419-429
    • Faloutsos, C.1    Ranganathan, M.2    Manolopulos, Y.3
  • 33
    • 0034592914 scopus 로고    scopus 로고
    • Deformable Markov model templates for time-series pattern matching
    • Boston, MA, August 20-23
    • X. Ge and P. Smyth. Deformable Markov model templates for time-series pattern matching. In Proceedings of the 6th ACM SIGKDD. Boston, MA, pp. 81-90, August 20-23, 2000.
    • (2000) Proceedings of the 6th ACM SIGKDD , pp. 81-90
    • Ge, X.1    Smyth, P.2
  • 37
    • 33750298296 scopus 로고    scopus 로고
    • Adaptive segmentation-based symbolic representation of time series for better modeling and lower bounding distance measures
    • Berlin, Germany, September 18-22
    • B. Hugueney. Adaptive segmentation-based symbolic representation of time series for better modeling and lower bounding distance measures. In Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases. Berlin, Germany, pp. 545-552, September 18-22, 2006.
    • (2006) Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases , pp. 545-552
    • Hugueney, B.1
  • 39
    • 10444228900 scopus 로고    scopus 로고
    • Pan-STARRS: A wide-field optical survey telescope array
    • N. Kaiser. Pan-STARRS: A wide-field optical survey telescope array. Proceedings of the SPIE, 5489, 11-22, 2004.
    • (2004) Proceedings of the SPIE , vol.5489 , pp. 11-22
    • Kaiser, N.1
  • 42
    • 85150810448 scopus 로고    scopus 로고
    • An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback
    • New York, NY, August 27-31
    • E. Keogh and M. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In Proceedings of the 4th International Conference on Knowledge Discovery and DataMining. New York, NY, pp. 239-241, August 27-31, 1998.
    • (1998) Proceedings of the 4th International Conference on Knowledge Discovery and DataMining , pp. 239-241
    • Keogh, E.1    Pazzani, M.2
  • 44
    • 0034832364 scopus 로고    scopus 로고
    • Locally adaptive dimensionality reduction for indexing large time series databases
    • Santa Barbara, May 21-24
    • E. Keogh, K. Chakrabarti, and M. Pazzani. Locally adaptive dimensionality reduction for indexing large time series databases. In Proceedings of ACM SIGMOD Conference on Management of Data. Santa Barbara, pp. 151-162, May 21-24, 2001.
    • (2001) Proceedings of ACM SIGMOD Conference on Management of Data , pp. 151-162
    • Keogh, E.1    Chakrabarti, K.2    Pazzani, M.3
  • 52
    • 34147132946 scopus 로고    scopus 로고
    • Finding the most unusual time series subsequence: Algorithms and applications
    • Springer-Verlag
    • E. Keogh, J. Lin, and A. Fu. Finding the most unusual time series subsequence: Algorithms and applications. Knowledge and Information Systems (KAIS). Springer-Verlag, 2006.
    • (2006) Knowledge and Information Systems (KAIS)
    • Keogh, E.1    Lin, J.2    Fu, A.3
  • 53
    • 40649122254 scopus 로고    scopus 로고
    • Evolutionary ensemble of diverse artificial neural networks using speciation
    • Progress in Modeling, Theory, and Application of Computational Intelligence-15th European Symposium on Artificial Neural Networks 2007, 15th European Symposium on Artificial Neural Networks 2007, March
    • K-J. Kim and S-B. Cho. Evolutionary ensemble of diverse artificial neural networks using speciation. Neurocomputing, 71(7-9), Progress in Modeling, Theory, and Application of Computational Intelligence-15th European Symposium on Artificial Neural Networks 2007, 15th European Symposium on Artificial Neural Networks 2007, pp. 1604-1618, March 2008.
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1604-1618
    • Kim, K.-J.1    Cho, S.-B.2
  • 54
    • 34249865363 scopus 로고    scopus 로고
    • Reducing uncertainties in neural network Jacobians and improving accuracy of neural network emulations with NN ensemble approaches
    • Computational Intelligence in Earth and Environmental Sciences
    • V. M. Krasnopolsky. Reducing uncertainties in neural network Jacobians and improving accuracy of neural network emulations with NN ensemble approaches, Neural Networks 20(4), Computational Intelligence in Earth and Environmental Sciences, 454-461, 2007.
    • (2007) Neural Networks , vol.20 , Issue.4 , pp. 454-461
    • Krasnopolsky, V.M.1
  • 55
    • 0025320805 scopus 로고
    • An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences
    • Lawrence, C. and Reilly, A. An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences. Proteins, 7, 41-51, 1990.
    • (1990) Proteins , vol.7 , pp. 41-51
    • Lawrence, C.1    Reilly, A.2
  • 57
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data-A survey
    • T. W. Liao. Clustering of time series data-A survey. Pattern Recognition, 38(11), 1857-1874, 2005.
    • (2005) Pattern Recognition , vol.38 , Issue.11 , pp. 1857-1874
    • Liao, T.W.1
  • 60
    • 34548093287 scopus 로고    scopus 로고
    • Stefano lonardi: Experiencing SAX: A novel symbolic representation of time series
    • J. Lin, E. J. Keogh, and L. Wei. Stefano lonardi: Experiencing SAX: A novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2), 107-144, 2007.
    • (2007) Data Mining and Knowledge Discovery , vol.15 , Issue.2 , pp. 107-144
    • Lin, J.1    Keogh, E.J.2    Wei, L.3
  • 62
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • R. Lippmann. An introduction to computing with neural nets. ASSPMagazine, IEEE, 4(2), 4-22, 1987.
    • (1987) ASSPMagazine, IEEE , vol.4 , Issue.2 , pp. 4-22
    • Lippmann, R.1
  • 64
    • 85138364667 scopus 로고    scopus 로고
    • LSST Science Book, version 2.0, arXiv:0912.0201
    • LSST Science Collaborations and LSST Project, LSST Science Book, version 2.0, arXiv:0912.0201, http://www.lsst.org/lsst/scibook, 2009.
    • (2009)
  • 65
    • 62249218289 scopus 로고    scopus 로고
    • Time warp edit distance with stiffness adjustment for time series matching
    • P. Marteau. Time warp edit distance with stiffness adjustment for time series matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 306-318, 2009.
    • (2009) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.31 , Issue.2 , pp. 306-318
    • Marteau, P.1
  • 66
    • 78651352893 scopus 로고    scopus 로고
    • Identifying predictive multi-dimensional time series motifs: An application to severe weather prediction
    • A. McGovern, D. H. Rosendahl, R. A. Brown, and K. K. Droegemeier. Identifying predictive multi-dimensional time series motifs: An application to severe weather prediction. Data Mining and Knowledge Discovery, 22(1), 232-258, 2011.
    • (2011) Data Mining and Knowledge Discovery , vol.22 , Issue.1 , pp. 232-258
    • McGovern, A.1    Rosendahl, D.H.2    Brown, R.A.3    Droegemeier, K.K.4
  • 67
    • 0001457509 scopus 로고    scopus 로고
    • Some methods for classification and analysis of multivariate observation
    • L. Le Cam and J. Neyman (Eds.), University of California Press, Berkeley, CA
    • J. McQueen, Some methods for classification and analysis of multivariate observation. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, L. Le Cam and J. Neyman (Eds.), University of California Press, Berkeley, CA. Vol. 1, pp. 281-297.
    • Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • McQueen, J.1
  • 68
    • 54449087782 scopus 로고    scopus 로고
    • Clustering and co-evolution to construct neural network ensembles: An experimental study
    • F. L. Minku and Teresa B. Ludermir. Clustering and co-evolution to construct neural network ensembles: An experimental study. Neural Networks, 21(9), 2008.
    • (2008) Neural Networks , vol.21 , Issue.9
    • Minku, F.L.1    Ludermir, T.B.2
  • 69
    • 77956255457 scopus 로고    scopus 로고
    • Activity discovery: Sparse motifs from multivariate time series
    • Snowbird, Utah, April 4-7
    • D. Minnen, T. Starner, I. Essa, and C. Isbell. Activity discovery: sparse motifs from multivariate time series. Snowbird Learning Workshop, Snowbird, Utah, April 4-7, 2006.
    • (2006) Snowbird Learning Workshop
    • Minnen, D.1    Starner, T.2    Essa, I.3    Isbell, C.4
  • 70
  • 75
    • 33744973448 scopus 로고    scopus 로고
    • Feature-based classification of time-series data
    • N. Mastorakis and S. D. Nikolopoulos (Eds.), Nova Science Publishers, Commack, NY
    • A. Nanopoulos, R. Alcock, and Y. Manolopoulos. Feature-based classification of time-series data. In Information Processing and Technology, N. Mastorakis and S. D. Nikolopoulos (Eds.), Nova Science Publishers, Commack, NY, 49-61, 2001.
    • (2001) Information Processing and Technology , pp. 49-61
    • Nanopoulos, A.1    Alcock, R.2    Manolopoulos, Y.3
  • 80
    • 84879888269 scopus 로고    scopus 로고
    • Time-series classification in many intrinsic dimensions
    • M. Radovanovic, A. Nanopoulos, and M. Ivanovic. Time-series classification in many intrinsic dimensions. SDM, 677-688, 2010.
    • (2010) SDM , pp. 677-688
    • Radovanovic, M.1    Nanopoulos, A.2    Ivanovic, M.3
  • 82
    • 71449108289 scopus 로고    scopus 로고
    • Exploring the optical transient sky with the palomar transient factory
    • A. Rau et al. Exploring the optical transient sky with the palomar transient factory. Publications of the Astronomical Society of the Pacific, 886, 1334-1351, 2009.
    • (2009) Publications of the Astronomical Society of the Pacific , vol.886 , pp. 1334-1351
    • Rau, A.1
  • 84
    • 22544442515 scopus 로고    scopus 로고
    • Support vector machines of intervalbased features for time series classification
    • J. J. Rodríguez, C. J. Alonso, and J. A. Maestro. Support vector machines of intervalbased features for time series classification. Knowledge-Based Systems, 18(4-5), 171-178, 2005.
    • (2005) Knowledge-Based Systems , vol.18 , Issue.4-5 , pp. 171-178
    • Rodríguez, J.J.1    Alonso, C.J.2    Maestro, J.A.3
  • 86
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408, 1958.
    • (1958) Psychological Review , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 87
    • 0016572913 scopus 로고
    • A vector space model for automatic indexing
    • G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commun. ACM, 19(11), 613-620, 1975.
    • (1975) Commun. ACM , vol.19 , Issue.11 , pp. 613-620
    • Salton, G.1    Wong, A.2    Yang, C.S.3
  • 90
    • 18444365004 scopus 로고    scopus 로고
    • The optical gravitational lensing experiment. Internet Access to the OGLE Photometry Data Set: OGLE-II BVI maps and I-band data
    • M. K. Szymanski. The optical gravitational lensing experiment. Internet Access to the OGLE Photometry Data Set: OGLE-II BVI maps and I-band data. Acta Astronomica, 55, 43-57, 2005.
    • (2005) Acta Astronomica , vol.55 , pp. 43-57
    • Szymanski, M.K.1
  • 91
    • 50949085018 scopus 로고    scopus 로고
    • Discovering original motifs with different lengths from time series
    • H. Tang and S. S. Liao. Discovering original motifs with different lengths from time series. Knowlege-Based Systems, 21(7), 666-671, 2008.
    • (2008) Knowlege-Based Systems , vol.21 , Issue.7 , pp. 666-671
    • Tang, H.1    Liao, S.S.2
  • 92
    • 85138415161 scopus 로고    scopus 로고
    • Estimating the values of function at given points
    • Wiley-Interscience, New York
    • V. Vapnik. Estimating the values of function at given points. Statistical Learning Theory, Wiley-Interscience, New York, 1998.
    • (1998) Statistical Learning Theory
    • Vapnik, V.1
  • 94
    • 33749012790 scopus 로고    scopus 로고
    • Characteristic-based clustering for time series data
    • X. Wang, K. Smith, and R. Hyndman. Characteristic-based clustering for time series data. Data Mining and Knowledge Discovery, 13(3), 335-364, 2006.
    • (2006) Data Mining and Knowledge Discovery , vol.13 , Issue.3 , pp. 335-364
    • Wang, X.1    Smith, K.2    Hyndman, R.3
  • 97
    • 56749152114 scopus 로고    scopus 로고
    • Disk aware discord discovery: Finding unusual time series in terabyte sized datasets
    • November, 2008
    • Dragomir Yankov, Eamonn Keogh, and Umaa Rebbapragada. 2008. Disk aware discord discovery: finding unusual time series in terabyte sized datasets. Knowledge and Information Systems 17, 241-262, November 2008.
    • (2008) Knowledge and Information Systems , vol.17 , pp. 241-262
    • Yankov, D.1    Keogh, E.2    Rebbapragada, U.3
  • 99
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 137(1-2), 239-263, 2002.
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 100
    • 33745456231 scopus 로고    scopus 로고
    • Technical Report, no. 1530, Computer Sciences, University of Wisconsin-Madison
    • X. Zhu. Semi-supervised learning literature survey. Technical Report, no. 1530, Computer Sciences, University of Wisconsin-Madison, 2005.
    • (2005) Semi-supervised learning literature survey
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.