메뉴 건너뛰기




Volumn 22, Issue 1-2, 2011, Pages 232-258

Identifying predictive multi-dimensional time series motifs: An application to severe weather prediction

Author keywords

Multi dimensional; Severe weather; Temporal data mining

Indexed keywords

EXTREME VALUE; LOW-ALTITUDE; MOTION CAPTURE; MULTI-DIMENSIONAL; PREDICTION ALGORITHMS; REAL WORLD DATA; SEVERE WEATHER; SUPERCELL THUNDERSTORMS; TEMPORAL DATA MINING; TEMPORAL ORDERING; TEMPORAL SEQUENCES; TIME-SERIES MOTIFS;

EID: 78651352893     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-010-0193-7     Document Type: Article
Times cited : (95)

References (45)
  • 1
    • 31344477235 scopus 로고    scopus 로고
    • The dependence of numerically simulated cyclic esocyclogenesis upon environmental vertical wind shear
    • 10.1175/MWR3039.1
    • E Adlerman KK Droegemeier 2005 The dependence of numerically simulated cyclic esocyclogenesis upon environmental vertical wind shear Mon Weather Rev 133 3595 3623 10.1175/MWR3039.1
    • (2005) Mon Weather Rev , vol.133 , pp. 3595-3623
    • Adlerman, E.1    Droegemeier, K.K.2
  • 3
    • 33750378337 scopus 로고
    • Collaborative adaptive sensing of the atmosphere (CASA): New radar system for improving analysis and forecasting of surface weather conditions
    • Brotzge J, Droegemeier KK, McLaughlin DJ (2006) Collaborative adaptive sensing of the atmosphere (CASA): new radar system for improving analysis and forecasting of surface weather conditions. J Transp Res Board (1948), pp 145-151
    • (1948) J Transp Res Board , pp. 145-151
    • Brotzge, J.1    Droegemeier, K.K.2    McLaughlin, D.J.3
  • 8
    • 34548551193 scopus 로고    scopus 로고
    • Kernel-density-based clustering of time series subsequences using a continuous random-walk noise model
    • Denton A (2005) Kernel-density-based clustering of time series subsequences using a continuous random-walk noise model. In: Proceedings of the fifth IEEE international conference on data mining, pp 122-129
    • (2005) Proceedings of the Fifth IEEE International Conference on Data Mining , pp. 122-129
    • Denton, A.1
  • 12
    • 23944499860 scopus 로고    scopus 로고
    • Prediction of Fort Worth tornadic thunderstorms using 3DVAR and cloud analysis with WSR-88D Level-II data
    • American Meteorological Society, Electronically published, Paper J1.2
    • Hu M, Xue M, Brewster K, Gao J (2004) Prediction of Fort Worth tornadic thunderstorms using 3DVAR and cloud analysis with WSR-88D Level-II data. In: 11th Conference on aviation, range, aerospace and 22nd conference on severe local storms, American Meteorological Society, Electronically published, Paper J1.2
    • (2004) 11th Conference on Aviation, Range, Aerospace and 22nd Conference on Severe Local Storms
    • Hu, M.1    Xue, M.2    Brewster, K.3    Gao, J.4
  • 14
    • 0032453673 scopus 로고    scopus 로고
    • The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm
    • 10.1175/15 20-0434(199 8)013<0263 :TSCIAT>2.0.CO;2
    • JT Johnson PL MacKeen A Witt ED Mitchell GJ Stumpf MD Eilts KW Thomas 1998 The storm cell identification and tracking algorithm: an enhanced WSR-88D algorithm Weather Forecast 13 2 263 276 10.1175/1520-0434(1998)013<0263: TSCIAT>2.0.CO;2
    • (1998) Weather Forecast , vol.13 , Issue.2 , pp. 263-276
    • Johnson, J.T.1    MacKeen, P.L.2    Witt, A.3    Mitchell, E.D.4    Stumpf, G.J.5    Eilts, M.D.6    Thomas, K.W.7
  • 21
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: A novel symbolic representation of time series
    • 10.1007/s10618-007-0064-z 2409783
    • J Lin E Keogh W Li S Lonardi 2007 Experiencing SAX: a novel symbolic representation of time series Data Min Knowl Discov 15 2 107 144 10.1007/s10618-007-0064-z 2409783
    • (2007) Data Min Knowl Discov , vol.15 , Issue.2 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Li, W.3    Lonardi, S.4
  • 22
    • 43249103359 scopus 로고    scopus 로고
    • Optimistic pruning for multiple instance learning
    • 10.1016/j.patrec.2008.01.024
    • A McGovern D Jensen 2008 Optimistic pruning for multiple instance learning Pattern Recognit Lett 29 9 1252 1260 10.1016/j.patrec.2008.01.024
    • (2008) Pattern Recognit Lett , vol.29 , Issue.9 , pp. 1252-1260
    • McGovern, A.1    Jensen, D.2
  • 30
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • 1039.68105 10.1023/A:1024099825458
    • FJ Provost P Domingos 2003 Tree induction for probability-based ranking Mach Learn 52 199 215 1039.68105 10.1023/A:1024099825458
    • (2003) Mach Learn , vol.52 , pp. 199-215
    • Provost, F.J.1    Domingos, P.2
  • 32
    • 0000322510 scopus 로고
    • The critical success index as an indicator of warning skill
    • 10.1175/15 20-0434(1990)005<05 70:TCSIAA>2.0.C O;2 1044070
    • JT Schaefer 1990 The critical success index as an indicator of warning skill Weather Forecast 5 4 570 575 10.1175/1520-0434(1990)005<0570: TCSIAA>2.0.CO;2 1044070
    • (1990) Weather Forecast , vol.5 , Issue.4 , pp. 570-575
    • Schaefer, J.T.1
  • 37
    • 0000835392 scopus 로고
    • OPUS: An efficient admissible algorithm for unordered search
    • 0900.68180
    • GI Webb 1995 OPUS: an efficient admissible algorithm for unordered search J Artif Intell Res 3 431 465 0900.68180
    • (1995) J Artif Intell Res , vol.3 , pp. 431-465
    • Webb, G.I.1
  • 39
    • 0034345482 scopus 로고    scopus 로고
    • The advanced regional prediction system (ARPS)-A multiscale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification
    • 10.1007/s007030070003
    • M Xue KK Droegemeier V Wong 2000 The advanced regional prediction system (ARPS)-a multiscale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification Meteorol Atmos Phys 75 161 193 10.1007/s007030070003
    • (2000) Meteorol Atmos Phys , vol.75 , pp. 161-193
    • Xue, M.1    Droegemeier, K.K.2    Wong, V.3
  • 40
    • 0035532521 scopus 로고    scopus 로고
    • The advanced regional prediction system (ARPS)-A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications
    • 10.1007/s007030170027
    • M Xue KK Droegemeier V Wong A Shapiro K Brewster F Carr D Weber Y Liu D Wang 2001 The advanced regional prediction system (ARPS)-a multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics and applications Meteorol Atmos Phys 76 134 165 10.1007/s007030170027
    • (2001) Meteorol Atmos Phys , vol.76 , pp. 134-165
    • Xue, M.1    Droegemeier, K.K.2    Wong, V.3    Shapiro, A.4    Brewster, K.5    Carr, F.6    Weber, D.7    Liu, Y.8    Wang, D.9
  • 41
    • 0344898900 scopus 로고    scopus 로고
    • The advanced regional prediction system (ARPS), storm-scale numerical weather prediction and data assimilation
    • 10.1007/s00703-001-0595-6
    • M Xue D Wang J Gao K Brewster KK Droegemeier 2003 The advanced regional prediction system (ARPS), storm-scale numerical weather prediction and data assimilation Meteorol Atmos Phys 82 139 170 10.1007/s00703-001-0595-6
    • (2003) Meteorol Atmos Phys , vol.82 , pp. 139-170
    • Xue, M.1    Wang, D.2    Gao, J.3    Brewster, K.4    Droegemeier, K.K.5
  • 44
    • 0034826102 scopus 로고    scopus 로고
    • Spade: An efficient algorithm for mining frequent sequences
    • special issue on unsupervised learning
    • Zaki MJ (2001) Spade: An efficient algorithm for mining frequent sequences. Mach Learn 42(1/2):31-60, special issue on unsupervised learning
    • (2001) Mach Learn , vol.42 , Issue.1-2 , pp. 31-60
    • Zaki, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.