메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1-333

PROTON EXCHANGE MEMBRANE FUEL CELLS

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85134938296     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b15499     Document Type: Book
Times cited : (28)

References (41)
  • 1
    • 39849098608 scopus 로고    scopus 로고
    • Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix
    • Alberti, G., R. Narducci, and M. Sganappa. 2008. Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix. J. Power Sources 178: 575-583.
    • (2008) J. Power Sources , vol.178 , pp. 575-583
    • Alberti, G.1    Narducci, R.2    Sganappa, M.3
  • 3
    • 71249084653 scopus 로고    scopus 로고
    • Sorption enhanced reaction process for direct production of fuel-cell grade hydrogen by low temperature catalytic steam-methane reforming
    • Beaver, M. G., H. S. Caram, and S. Sircar. 2010. Sorption enhanced reaction process for direct production of fuel-cell grade hydrogen by low temperature catalytic steam-methane reforming. J. Power Sources 195: 1998-2002.
    • (2010) J. Power Sources , vol.195 , pp. 1998-2002
    • Beaver, M.G.1    Caram, H.S.2    Sircar, S.3
  • 4
    • 33748603446 scopus 로고    scopus 로고
    • Reforming catalysts for hydrogen generation in fuel cell applications
    • Cheekatamarla, P. K. and C. M. Finnerty. 2006. Reforming catalysts for hydrogen generation in fuel cell applications. J. Power Sources 160: 490-499.
    • (2006) J. Power Sources , vol.160 , pp. 490-499
    • Cheekatamarla, P.K.1    Finnerty, C.M.2
  • 5
    • 39849110004 scopus 로고    scopus 로고
    • Percolative model of proton conductivity of Nafion membranes
    • Costamagna, P., S. Grosso, and R. D. Felice. 2008. Percolative model of proton conductivity of Nafion membranes. J. Power Sources 178: 537-546.
    • (2008) J. Power Sources , vol.178 , pp. 537-546
    • Costamagna, P.1    Grosso, S.2    Felice, R.D.3
  • 7
    • 33751113010 scopus 로고    scopus 로고
    • High voltage stability of nanostructured thin film catalysts for PEM fuel cells
    • Debe, M. K., A. K. Schmoeckel, G. D. Vernstrom, and R. Atanasoski. 2006. High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources 161: 1002-1011.
    • (2006) J. Power Sources , vol.161 , pp. 1002-1011
    • Debe, M.K.1    Schmoeckel, A.K.2    Vernstrom, G.D.3    Atanasoski, R.4
  • 9
    • 0024089173 scopus 로고
    • A New Approach to the Problem of Carbon Monoxide Poisoning in Fuel Cells Operating at Low Temperatures
    • Gottesfeld, S. and J Pafford. 1988. A New Approach to the Problem of Carbon Monoxide Poisoning in Fuel Cells Operating at Low Temperatures. J. Electrochem. Soc. 135(10): 2651-2652.
    • (1988) J. Electrochem. Soc , vol.135 , Issue.10 , pp. 2651-2652
    • Gottesfeld, S.1    Pafford, J.2
  • 10
    • 85134903793 scopus 로고
    • CRC Handbook of Chemistry and Physics (1913-1995), 75th Edition (Special Student Edition), editor-in-chief, David R. Lide, 5-48-5-71. Boca Raton: CRC Press
    • Gurvich, L. V., V. S. Iorish, V. S. Yungman, and O. V. Dorofeeva. 1994. Thermodynamic properties as a function of temperature. In CRC Handbook of Chemistry and Physics (1913-1995), 75th Edition (Special Student Edition), editor-in-chief, David R. Lide, 5-48-5-71. Boca Raton: CRC Press.
    • (1994) Thermodynamic Properties as a Function of Temperature
    • Gurvich, L.V.1    Iorish, V.S.2    Yungman, V.S.3    Dorofeeva, O.V.4
  • 11
    • 0033876579 scopus 로고    scopus 로고
    • Oxygen diffusion coefficient and solubility in a new proton exchange membrane
    • Haug, A. T. and R. E. White, 2000. Oxygen diffusion coefficient and solubility in a new proton exchange membrane. J. Electrochem. Soc. 147(3): 980-3.
    • (2000) J. Electrochem. Soc. , vol.147 , Issue.3 , pp. 980-983
    • Haug, A.T.1    White, R.E.2
  • 12
    • 84889855924 scopus 로고    scopus 로고
    • Support and Particle Size Effects in Electrocatalysis
    • editor, M. T. M. Koper, Hoboken, New Jersey: John Wiley & Sons
    • Hayden, B. E. and J. Suchsland. 2009. Support and Particle Size Effects in Electrocatalysis, in Fuel Cell Catalysis—A Surface Science Approach, editor, M. T. M. Koper, 567-592. Hoboken, New Jersey: John Wiley & Sons.
    • (2009) Fuel Cell Catalysis—A Surface Science Approach , pp. 567-592
    • Hayden, B.E.1    Suchsland, J.2
  • 13
    • 71549157187 scopus 로고    scopus 로고
    • Effects of ionomer content and oxygen permeation of the catalyst layer on proton exchange membrane fuel cell cold start-up
    • Hiramitsu, Y., N. Mitsuzawa, K. Okada, and M. Hori. 2010. Effects of ionomer content and oxygen permeation of the catalyst layer on proton exchange membrane fuel cell cold start-up. J. Power Sources 195: 1038-1045.
    • (2010) J. Power Sources , vol.195 , pp. 1038-1045
    • Hiramitsu, Y.1    Mitsuzawa, N.2    Okada, K.3    Hori, M.4
  • 14
    • 41949095272 scopus 로고    scopus 로고
    • Conductivity of aromatic-based proton exchange membranes at subzero temperatures
    • Hou, J., H. Yu, L. Wang, D. Xing, Z. Hou, P. Ming, Z. Shao, and B. Yi. 2008. Conductivity of aromatic-based proton exchange membranes at subzero temperatures. J. Power Sources 180: 232-237.
    • (2008) J. Power Sources , vol.180 , pp. 232-237
    • Hou, J.1    Yu, H.2    Wang, L.3    Xing, D.4    Hou, Z.5    Ming, P.6    Shao, Z.7    Yi, B.8
  • 15
    • 73249140579 scopus 로고    scopus 로고
    • Development of a proton exchange membrane fuel cell cogeneration system
    • Hwang, J. J. and M. L. Zou. 2010. Development of a proton exchange membrane fuel cell cogeneration system. J. Power Sources 195: 2579-2585.
    • (2010) J. Power Sources , vol.195 , pp. 2579-2585
    • Hwang, J.J.1    Zou, M.L.2
  • 17
    • 2342477765 scopus 로고    scopus 로고
    • Investigation of fuel cell reactions at the composite microelectrode/solid polymer electrolyte interface. I. Hydrogen oxidation at the nanostructured Pt/Nafion membrane interface
    • Jiang, J. and A. Kucernak. 2005. "Investigation of fuel cell reactions at the composite microelectrode/solid polymer electrolyte interface. I. Hydrogen oxidation at the nanostructured Pt/Nafion membrane interface." J. Electroanal. Chem. 567: 123-137.
    • (2005) J. Electroanal. Chem. , vol.567 , pp. 123-137
    • Jiang, J.1    Kucernak, A.2
  • 18
    • 65649133664 scopus 로고    scopus 로고
    • Electrochemical studies of an unsupported PtIr electrocatalyst as a bifunctional oxygen electrode in a unitized regenerative fuel cell
    • Jung, H. Y., S. Park, and B. N. Popov. 2009. Electrochemical studies of an unsupported PtIr electrocatalyst as a bifunctional oxygen electrode in a unitized regenerative fuel cell. J. Power Sources 191: 357-361.
    • (2009) J. Power Sources , vol.191 , pp. 357-361
    • Jung, H.Y.1    Park, S.2    Popov, B.N.3
  • 19
    • 0030245978 scopus 로고    scopus 로고
    • Methanol permeability in perfluorosulfonate proton exchange membranes at elevated temperatures
    • Kauranen, P. S. and E. Skou. 1996. Methanol permeability in perfluorosulfonate proton exchange membranes at elevated temperatures. J. Appl. Electrochem. 26: 909-917.
    • (1996) J. Appl. Electrochem. , vol.26 , pp. 909-917
    • Kauranen, P.S.1    Skou, E.2
  • 22
    • 33846820450 scopus 로고    scopus 로고
    • A compact and highly efficient natural gas fuel processor for 1-kW residential polymer electrolyte membrane fuel cells
    • Lee, D., H. C. Lee, K. H. Lee, and S. Kim. 2007. A compact and highly efficient natural gas fuel processor for 1-kW residential polymer electrolyte membrane fuel cells. J. Power Sources 165: 337-341.
    • (2007) J. Power Sources , vol.165 , pp. 337-341
    • Lee, D.1    Lee, H.C.2    Lee, K.H.3    Kim, S.4
  • 23
    • 51449117102 scopus 로고    scopus 로고
    • Size-effect on the activity of anodic catalyst in alcohol and CO electrooxidation
    • Li, X., X. Qiu, H. Yuan, L. Chen, and W. Zhu. 2008. Size-effect on the activity of anodic catalyst in alcohol and CO electrooxidation. J. Power Sources 184: 353-360.
    • (2008) J. Power Sources , vol.184 , pp. 353-360
    • Li, X.1    Qiu, X.2    Yuan, H.3    Chen, L.4    Zhu, W.5
  • 25
    • 84889805625 scopus 로고    scopus 로고
    • Size Effects in Electrocatalysis of Fuel Cell Reactions on Supported Metal nanoparticles
    • editor, M. T. M. Koper, Hoboken, New Jersey: John Wiley & Sons
    • Maillard, F., S. Pronkit, and E. R. Savinova. 2009. Size Effects in Electrocatalysis of Fuel Cell Reactions on Supported Metal nanoparticles, in Fuel Cell Catalysis—A Surface Science Approach, editor, M. T. M. Koper, 507-566. Hoboken, New Jersey: John Wiley & Sons.
    • (2009) Fuel Cell Catalysis—A Surface Science Approach , pp. 507-566
    • Maillard, F.1    Pronkit, S.2    Savinova, E.R.3
  • 27
    • 64549106500 scopus 로고    scopus 로고
    • Fuel cells for automotive powertrains—A techno-economic assessment
    • Mock, P. and S. A. Schmid. 2009. Fuel cells for automotive powertrains—A techno-economic assessment. J. Power Sources 190: 133-140.
    • (2009) J. Power Sources , vol.190 , pp. 133-140
    • Mock, P.1    Schmid, S.A.2
  • 28
  • 29
    • 84884428899 scopus 로고    scopus 로고
    • Reactor Design for Fuel Processing
    • edited by D. Shekhawat, J. J. Spivey, and D. A. Berry, Amsterdam, The Netherlands: Elsevier
    • Önsan, Z. I. and A.K. Avci. 2011. Reactor Design for Fuel Processing, in Fuel Cells: Technologies for Fuel Processing, edited by D. Shekhawat, J. J. Spivey, and D. A. Berry, 451-516. Amsterdam, The Netherlands: Elsevier.
    • (2011) Fuel Cells: Technologies for Fuel Processing , pp. 451-516
    • Önsan, Z.I.1    Avci, A.K.2
  • 30
    • 0026913131 scopus 로고
    • 1992. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface—a microelectrode investigation
    • Parthasarathy, A., S. Srinivasan, A. J. Appleby, and C. R. Martin, 1992. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface—a microelectrode investigation, J. Electrochem. Soc. 139(9):1992: 2530-7.
    • (1992) J. Electrochem. Soc , vol.139 , Issue.9 , pp. 2530-2537
    • Parthasarathy, A.1    Srinivasan, S.2    Appleby, A.J.3    Martin, C.R.4
  • 31
    • 34848838589 scopus 로고    scopus 로고
    • Water sorption-desorption in Nafion membranes at low temperature, probed by micro X-ray diffraction
    • Pineri, M., G. Gebel, R. J. Davies, and O. Diat. 2007. Water sorption-desorption in Nafion membranes at low temperature, probed by micro X-ray diffraction. J. Power Sources 172: 587-596.
    • (2007) J. Power Sources , vol.172 , pp. 587-596
    • Pineri, M.1    Gebel, G.2    Davies, R.J.3    Diat, O.4
  • 32
    • 1842507416 scopus 로고    scopus 로고
    • Effect of Carbon Dioxide and Ammonia on Polymer Electrolyte Membrane Fuel Cell Stack Performance
    • Rajalakshmi, N., T.T.Jayanth, and K.S.Dhathathreyan. 2004. Effect of Carbon Dioxide and Ammonia on Polymer Electrolyte Membrane Fuel Cell Stack Performance. Fuel Cells 3(4):177-180.
    • (2004) Fuel Cells , vol.3 , Issue.4 , pp. 177-180
    • Rajalakshmi, N.1    Jayanth, T.T.2    Dhathathreyan, K.S.3
  • 34
    • 33847319256 scopus 로고    scopus 로고
    • Hydrogen sulfide poisoning and recovery of PEMFC Pt-anodes
    • Shi, W., B. Yi, M. Hou, F. Jing, and P. Ming. 2007. Hydrogen sulfide poisoning and recovery of PEMFC Pt-anodes. J. Power Sources 165: 814-818.
    • (2007) J. Power Sources , vol.165 , pp. 814-818
    • Shi, W.1    Yi, B.2    Hou, M.3    Jing, F.4    Ming, P.5
  • 35
    • 84858733026 scopus 로고    scopus 로고
    • Cold start characteristics and freezing mechanism dependence on start-up temperature in a polymer electrolyte membrane fuel cell
    • Tabe, Y., M. Saito, K. Kukui, and T. Chikahisa. 2012. Cold start characteristics and freezing mechanism dependence on start-up temperature in a polymer electrolyte membrane fuel cell. J. Power Sources 208: 366-373.
    • (2012) J. Power Sources , vol.208 , pp. 366-373
    • Tabe, Y.1    Saito, M.2    Kukui, K.3    Chikahisa, T.4
  • 36
    • 33748100890 scopus 로고    scopus 로고
    • PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode
    • Tang, H., Z. Qi, M. Ramani, and J. F. Elter. 2006. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J. Power Sources 158: 1306-12.
    • (2006) J. Power Sources , vol.158 , pp. 1306-1312
    • Tang, H.1    Qi, Z.2    Ramani, M.3    Elter, J.F.4
  • 39
    • 84863056036 scopus 로고    scopus 로고
    • Ionic conductivity of pure water in charged porous matrix
    • Wang, Q., C.-S. Cha, J. Lu, and L. Zhuang. 2012. Ionic conductivity of pure water in charged porous matrix. ChemPhysChem 13: 514-519.
    • (2012) Chemphyschem , vol.13 , pp. 514-519
    • Wang, Q.1    Cha, C.-S.2    Lu, J.3    Zhuang, L.4
  • 40
    • 84877242068 scopus 로고    scopus 로고
    • Wikipedia. Hydrogen safety. http://en.wikipedia.org/wiki/Hydrogen_safety.
    • Hydrogen Safety
  • 41
    • 33748033729 scopus 로고    scopus 로고
    • Removal of sulphur-con-taining odorants from fuel gases for fuel cell-based combined heat and power applications
    • Wild, P. J., R. G. Nyqvist, F. A. Bruijn, and E. R. Stobbe. 2006. Removal of sulphur-con-taining odorants from fuel gases for fuel cell-based combined heat and power applications. J. Power Sources 159: 995-1004.
    • (2006) J. Power Sources , vol.159 , pp. 995-1004
    • Wild, P.J.1    Nyqvist, R.G.2    Bruijn, F.A.3    Stobbe, E.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.