-
1
-
-
64249110018
-
Bipower variations for Gaussian processes with stationary increments
-
O. Barndorff-Nielsen, J. Corcuera, M. Podolskij and J. Woerner (2009). Bipower variations for Gaussian processes with stationary increments. J. Appl. Probab. 46, no. 1, 132-150.
-
(2009)
J. Appl. Probab
, vol.46
, Issue.1
, pp. 132-150
-
-
Barndorff-Nielsen, O.1
Corcuera, J.2
Podolskij, M.3
Woerner, J.4
-
3
-
-
53349168623
-
Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion
-
J.-C. Breton and I. Nourdin (2008). Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion. Electron. Comm. Probab. 13, 482-493.
-
(2008)
Electron. Comm. Probab
, vol.13
, pp. 482-493
-
-
Breton, J.-C.1
Nourdin, I.2
-
4
-
-
70450259195
-
Exact confidence intervals for the Hurst parameter of a fractional Brownian motion
-
(Electronic)
-
J.-C. Breton, I. Nourdin and G. Peccati (2009). Exact confidence intervals for the Hurst parameter of a fractional Brownian motion. Electron. J. Statist. 3, 416-425 (Electronic)
-
(2009)
Electron. J. Statist
, vol.3
, pp. 416-425
-
-
Breton, J.-C.1
Nourdin, I.2
Peccati, G.3
-
5
-
-
0000323474
-
Central limit theorems for non-linear functionals of Gaussian fields
-
P. Breuer et P. Major (1983). Central limit theorems for non-linear functionals of Gaussian fields. J. Muit. Anal. 13, 425-441.
-
(1983)
J. Muit. Anal
, vol.13
, pp. 425-441
-
-
Breuer, P.1
Major, P.2
-
6
-
-
0001452437
-
Central limit theorems for nonlinear functionals of stationary Gaussian processes
-
D. Chambers et E. Slud (1989). Central limit theorems for nonlinear functionals of stationary Gaussian processes. Probab. Theory Rel. Fields 80, 323-349.
-
(1989)
Probab. Theory Rel. Fields
, vol.80
, pp. 323-349
-
-
Chambers, D.1
Slud, E.2
-
7
-
-
35148822926
-
Stein's method for normal approximation
-
(A.D. Barbour and L.H.Y. Chen, eds), Lecture Notes Series No.4, Institute for Mathematical Sciences, National University of Singapore, Singapore University Press and World Scientific 2005
-
L.H.Y. Chen and Q.-M. Shao (2005). Stein's method for normal approximation. In: An Introduction to Stein's Method (A.D. Barbour and L.H.Y. Chen, eds), Lecture Notes Series No.4, Institute for Mathematical Sciences, National University of Singapore, Singapore University Press and World Scientific 2005, 1-59.
-
(2005)
An Introduction to Stein's Method
, pp. 1-59
-
-
Chen, L.H.Y.1
Shao, Q.-M.2
-
8
-
-
33845455397
-
Power variation of some integral long memory process
-
J.M. Corcuera, D. Nualart et J.H.C. Woerner (2006). Power variation of some integral long memory process. Bernoulli 12, no. 4, 713-735.
-
(2006)
Bernoulli
, vol.12
, Issue.4
, pp. 713-735
-
-
Corcuera, J.M.1
Nualart, D.2
Woerner, J.H.C.3
-
9
-
-
0346232520
-
Limit behavior of multiple stochastic integral
-
(in Russian)
-
Y.A. Davydov and G.V. Martynova (1987). Limit behavior of multiple stochastic integral. Preila, Nauka, Moscow 55-57 (in Russian).
-
(1987)
Preila, Nauka, Moscow
, pp. 55-57
-
-
Davydov, Y.A.1
Martynova, G.V.2
-
10
-
-
0000660999
-
The sizes of compact subsets of Hilbert space and continuity of Gaussian processes
-
R.M. Dudley (1967). The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1, 290-330.
-
(1967)
J. Funct. Anal
, vol.1
, pp. 290-330
-
-
Dudley, R.M.1
-
11
-
-
51249172022
-
CLT and other limit theorems for functionals of Gaussian processes
-
L. Giraitis and D. Surgailis (1985). CLT and other limit theorems for functionals of Gaussian processes. Zeitschrift für Wahrsch. verw. Gebiete 70, 191-212.
-
(1985)
Zeitschrift für Wahrsch. verw. Gebiete
, vol.70
, pp. 191-212
-
-
Giraitis, L.1
Surgailis, D.2
-
12
-
-
0003876050
-
-
Cambridge University Press, Cambridge
-
S. Janson (1997). Gaussian Hilbert Spaces. Cambridge University Press, Cambridge.
-
(1997)
Gaussian Hilbert Spaces
-
-
Janson, S.1
-
13
-
-
0003712157
-
-
LNM 849. Springer-Verlag, Berlin Heidelberg New York
-
P. Major (1981). Multiple Wiener-Itô integrals. LNM 849. Springer-Verlag, Berlin Heidelberg New York.
-
(1981)
Multiple Wiener-Itô integrals
-
-
Major, P.1
-
14
-
-
39149140017
-
High-frequency asymptotics for subordinated stationary fields on an Abelian compact group
-
D. Marinucci and G. Peccati (2007). High-frequency asymptotics for subordinated stationary fields on an Abelian compact group. Stochastic Process. Appl. 118, no. 4, 585-613.
-
(2007)
Stochastic Process. Appl
, vol.118
, Issue.4
, pp. 585-613
-
-
Marinucci, D.1
Peccati, G.2
-
15
-
-
35548963865
-
Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion
-
A. Neuenkirch and I. Nourdin (2007). Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. J. Theoret. Probab. 20, no. 4, 871-899.
-
(2007)
J. Theoret. Probab
, vol.20
, Issue.4
, pp. 871-899
-
-
Neuenkirch, A.1
Nourdin, I.2
-
16
-
-
64249132864
-
Non-central convergence of multiple integrals
-
I. Nourdin and G. Peccati (2009). Non-central convergence of multiple integrals. Ann. Probab. 37, no. 4, 1412-1426.
-
(2009)
Ann. Probab
, vol.37
, Issue.4
, pp. 1412-1426
-
-
Nourdin, I.1
Peccati, G.2
-
17
-
-
48849095030
-
Weighted power variations of iterated Brownian motion
-
(Electronic)
-
I. Nourdin and G. Peccati (2008). Weighted power variations of iterated Brownian motion. Electron. J. Probab. 13, no. 43, 1229-1256 (Electronic).
-
(2008)
Electron. J. Probab
, vol.13
, Issue.43
, pp. 1229-1256
-
-
Nourdin, I.1
Peccati, G.2
-
19
-
-
69749086746
-
Stein's method and exact Berry-Esséen asymptotics for functionals of Gaussian fields
-
appear
-
I. Nourdin and G. Peccati (2008). Stein's method and exact Berry-Esséen asymptotics for functionals of Gaussian fields. Ann. Probab.,to appear.
-
(2008)
Ann. Probab.,to
-
-
Nourdin, I.1
Peccati, G.2
-
20
-
-
67349100635
-
Second order Poincaré inequalities and CLTs on Wiener space
-
I. Nourdin, G. Peccati and G. Reinert (2009). Second order Poincaré inequalities and CLTs on Wiener space. J. Func. Anal. 257, 593-609.
-
(2009)
J. Func. Anal
, vol.257
, pp. 593-609
-
-
Nourdin, I.1
Peccati, G.2
Reinert, G.3
-
24
-
-
85123566301
-
Density estimates and concentration inequalities with Malliavin calculus
-
to appear
-
I. Nourdin and F. Viens (2008). Density estimates and concentration inequalities with Malliavin calculus. Electron. J. Probab., to appear.
-
(2008)
Electron. J. Probab
-
-
Nourdin, I.1
Viens, F.2
-
26
-
-
39149144861
-
Central limit theorems for multiple stochastic integrals and Malliavin calculus
-
D. Nualart and S. Ortiz-Latorre (2008). Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stochastic Process. Appl. 118 (4), 614-628.
-
(2008)
Stochastic Process. Appl
, vol.118
, Issue.4
, pp. 614-628
-
-
Nualart, D.1
Ortiz-Latorre, S.2
-
27
-
-
14944377936
-
Central limit theorems for sequences of multiple stochastic integrals
-
D. Nualart and G. Peccati (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (1), 177-193.
-
(2005)
Ann. Probab
, vol.33
, Issue.1
, pp. 177-193
-
-
Nualart, D.1
Peccati, G.2
-
28
-
-
0000568691
-
Anticipative calculus for the Poisson space based on the Fock space
-
Springer-Verlag, Berlin Heidelberg New York
-
D. Nualart and J. Vives (1990). Anticipative calculus for the Poisson space based on the Fock space. Séminaire de Probabilités XXIV, LNM 1426. Springer-Verlag, Berlin Heidelberg New York, pp. 154-165.
-
(1990)
Séminaire de Probabilités XXIV, LNM
, vol.1426
, pp. 154-165
-
-
Nualart, D.1
Vives, J.2
-
29
-
-
85123567800
-
Stein's method and normal approximation of Poisson functionals
-
toappear
-
G. Peccati, J.-L. Sole, F. Utzet and M.S. Taqqu (2008). Stein's method and normal approximation of Poisson functionals. Ann. Probab.,toappear.
-
(2008)
Ann. Probab
-
-
Peccati, G.1
Sole, J.-L.2
Utzet, F.3
Taqqu, M.S.4
-
31
-
-
85007107687
-
Gaussian limits for vector-valued multiple stochastic integrals
-
Springer-Verlag, Berlin Heidelberg New York
-
G. Peccati and C.A. Tudor (2005). Gaussian limits for vector-valued multiple stochastic integrals. Séminaire de Probabilités XXXVIII, LNM 1857. Springer-Verlag, Berlin Heidelberg New York, pp. 247-262.
-
(2005)
Séminaire de Probabilités XXXVIII, LNM
, vol.1857
, pp. 247-262
-
-
Peccati, G.1
Tudor, C.A.2
-
32
-
-
68749104475
-
Stochastic analysis of Bernoulli processes
-
N. Privault (2008). Stochastic analysis of Bernoulli processes. Probability Surveys 5, 435-483.
-
(2008)
Probability Surveys
, vol.5
, pp. 435-483
-
-
Privault, N.1
-
33
-
-
67349131956
-
Three general approaches to Stein's method
-
Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 4, Singapore Univ. Press, Singapore
-
G. Reinert (2005). Three general approaches to Stein's method. In: An introduction to Stein's method, 183-221. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 4, Singapore Univ. Press, Singapore.
-
(2005)
An introduction to Stein's method
, pp. 183-221
-
-
Reinert, G.1
-
34
-
-
35548936488
-
The noise in the circular law and the Gaussian free field
-
B. Rider and B. Virág (2007). The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. 2, Art. ID rnm006.
-
(2007)
Int. Math. Res. Not
, vol.2
-
-
Rider, B.1
Virág, B.2
-
35
-
-
34547233310
-
Gaussian free field for mathematicians
-
S. Sheffield (1997). Gaussian free field for mathematicians. Probab. Theory Rel. Fields 139(3-4), 521-541
-
(1997)
Probab. Theory Rel. Fields
, vol.139
, Issue.3-4
, pp. 521-541
-
-
Sheffield, S.1
-
37
-
-
0003722779
-
-
Institute of Mathematical Statistics Lecture Notes - Monograph Series, 7. Institute of Mathematical Statistics, Hayward, CA
-
Ch. Stein (1986). Approximate computation of expectations. Institute of Mathematical Statistics Lecture Notes - Monograph Series, 7. Institute of Mathematical Statistics, Hayward, CA.
-
(1986)
Approximate computation of expectations
-
-
Stein, C.1
-
40
-
-
69749116117
-
Stein's lemma, Malliavin calculus and tail bounds, with applications to polymer fluctuation exponents
-
to appear
-
F. Viens (2009). Stein's lemma, Malliavin calculus and tail bounds, with applications to polymer fluctuation exponents. Stochastic Process. Appl.,to appear.
-
(2009)
Stochastic Process. Appl
-
-
Viens, F.1
|