-
1
-
-
47249150060
-
Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes
-
A. Begyn. Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes. Bernoulli, vol. 13, no. 3, pp. 712-753, 2007.
-
(2007)
Bernoulli
, vol.13
, Issue.3
, pp. 712-753
-
-
Begyn, A.1
-
2
-
-
33748508616
-
Convergence in variation of the joint laws of multiple Wiener-Ito integrals
-
J.-C. Breton. Convergence in variation of the joint laws of multiple Wiener-Ito integrals. Stat. Probab. Letters, vol. 76, pp. 1904-1913, 2006.
-
(2006)
Stat. Probab. Letters
, vol.76
, pp. 1904-1913
-
-
Breton, J.-C.1
-
3
-
-
0000323474
-
Central limit theorems for nonlinear functionals of Gaussian fields
-
P. Breuer and P. Major. Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal., vol. 13, no. 3, pp. 425-441, 1983.
-
(1983)
J. Multivariate Anal.
, vol.13
, Issue.3
, pp. 425-441
-
-
Breuer, P.1
Major, P.2
-
4
-
-
14844364925
-
Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths
-
J.-F. Coeurjolly. Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Statist. Infer. Stoch. Proc., vol. 4, pp. 199-227, 2001.
-
(2001)
Statist. Infer. Stoch. Proc.
, vol.4
, pp. 199-227
-
-
Coeurjolly, J.-F.1
-
5
-
-
0346232520
-
Limit behavior of multiple stochastic integral
-
Preila, Nauka, Moscow, (in Russian)
-
Y. A. Davydov and G. V. Martynova. Limit behavior of multiple stochastic integral. Statistics and control of random process. Preila, Nauka, Moscow, pp. 55-57, 1987 (in Russian).
-
(1987)
Statistics and Control of Random Process.
, pp. 55-57
-
-
Davydov, Y.A.1
Martynova, G.V.2
-
6
-
-
13844294706
-
Non-central limit theorems for nonlinear functionals of Gaussian fields
-
R. L. Dobrushin and P. Major. Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. verw. Gebiete, vol. 50, pp. 27-52, 1979.
-
(1979)
Z. Wahrsch. Verw. Gebiete
, vol.50
, pp. 27-52
-
-
Dobrushin, R.L.1
Major, P.2
-
7
-
-
51249172022
-
CLT and other limit theorems for functionals of Gaussian processes
-
L. Giraitis and D. Surgailis. CLT and other limit theorems for functionals of Gaussian processes. Z. Wahrsch. verw. Gebiete, vol. 70, pp. 191-212, 1985.
-
(1985)
Z. Wahrsch. Verw. Gebiete
, vol.70
, pp. 191-212
-
-
Giraitis, L.1
Surgailis, D.2
-
8
-
-
0031521238
-
Quadratic variations and estimators of the Holder index of a Gaussian process
-
J. Istas and G. Lang. Quadratic variations and estimators of the Holder index of a Gaussian process. Ann. Inst. H. Poincare Probab. Statist., vol. 33, pp. 407-436, 1997.
-
(1997)
Ann. Inst. H. Poincare Probab. Statist.
, vol.33
, pp. 407-436
-
-
Istas, J.1
Lang, G.2
-
9
-
-
85037890259
-
Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion
-
I. Nourdin. Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion. To appear in: Ann. Probab.
-
To Appear In: Ann. Probab
-
-
Nourdin, I.1
-
10
-
-
85037882371
-
Central and non-central limit theorems for weighted power variations of fractional Brownian motion
-
I. Nourdin, D. Nualart and C.A. Tudor. Central and non-central limit theorems for weighted power variations of fractional Brownian motion. Preprint.
-
Preprint
-
-
Nourdin, I.1
Nualart, D.2
Tudor, C.A.3
-
13
-
-
13344283509
-
Stochastic calculus with respect to the fractional Brownian motion and applications
-
D. Nualart. Stochastic calculus with respect to the fractional Brownian motion and applications. Contemp. Math. 336, 3-39, 2003.
-
(2003)
Contemp. Math.
, vol.336
, pp. 3-39
-
-
Nualart, D.1
-
14
-
-
0001915941
-
Convergence of integrated processes of arbitrary Hermite rank
-
M. Taqqu. Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. verw. Gebiete, vol. 50, pp. 53-83, 1979.
-
(1979)
Z. Wahrsch. Verw. Gebiete
, vol.50
, pp. 53-83
-
-
Taqqu, M.1
-
15
-
-
85037918484
-
Variations and estimators for the selfsimilarity order through Malliavin calculus
-
C.A. Tudor and F. Viens. Variations and estimators for the selfsimilarity order through Malliavin calculus. Preprint.
-
Preprint
-
-
Tudor, C.A.1
Viens, F.2
|