-
1
-
-
0002478027
-
On mixing and stability of limit theorems
-
ALDOUS, D. J. AND EAGLESON, G. K. (1978). On mixing and stability of limit theorems. Ann. Prob. 6, 325-331.
-
(1978)
Ann. Prob
, vol.6
, pp. 325-331
-
-
ALDOUS, D.J.1
EAGLESON, G.K.2
-
2
-
-
2642525861
-
Realized power variation and stochastic volatility models
-
BARNDORFF-NIELSEN, O. E. AND SHEPHARD, N. (2003). Realized power variation and stochastic volatility models. Bernoulli 9, 243-265.
-
(2003)
Bernoulli
, vol.9
, pp. 243-265
-
-
BARNDORFF-NIELSEN, O.E.1
SHEPHARD, N.2
-
3
-
-
2642557940
-
Econometric analysis of realized covariation: High frequency covariance, regression, and correlation in financial economics
-
BARNDORFF-NIELSEN, O. E. AND SHEPHARD, N. (2004). Econometric analysis of realized covariation: high frequency covariance, regression, and correlation in financial economics. Econometrica 72, 885-925.
-
(2004)
Econometrica
, vol.72
, pp. 885-925
-
-
BARNDORFF-NIELSEN, O.E.1
SHEPHARD, N.2
-
4
-
-
19644380659
-
Power and bipower variation with stochastic volatility and jumps (with discussion)
-
BARNDORFF-NIELSEN, O. E. AND SHEPHARD, N. (2004). Power and bipower variation with stochastic volatility and jumps (with discussion). J. Financial Econometrics 2, 1-48.
-
(2004)
J. Financial Econometrics
, vol.2
, pp. 1-48
-
-
BARNDORFF-NIELSEN, O.E.1
SHEPHARD, N.2
-
5
-
-
33644508697
-
Impact of jumps on returns and realised variances: Econometric analysis of time-deformed Lévy processes
-
BARNDORFF-NIELSEN, O. E. AND SHEPHARD, N. (2006). Impact of jumps on returns and realised variances: econometric analysis of time-deformed Lévy processes. J. Econometrics 131, 217-252.
-
(2006)
J. Econometrics
, vol.131
, pp. 217-252
-
-
BARNDORFF-NIELSEN, O.E.1
SHEPHARD, N.2
-
6
-
-
64249103455
-
-
BARNDORFF-NIELSEN, O. E. AND SHEPHARD, N. (2007). Variation, jumps, market frictions and high frequency data in financial econometrics. In Advances in Economics and Econometrics, eds R. Blundell et al., 9th World Congress, Cambridge University Press, pp. 328-372.
-
BARNDORFF-NIELSEN, O. E. AND SHEPHARD, N. (2007). Variation, jumps, market frictions and high frequency data in financial econometrics. In Advances in Economics and Econometrics, eds R. Blundell et al., 9th World Congress, Cambridge University Press, pp. 328-372.
-
-
-
-
8
-
-
33645975182
-
Limit theorems for multipower variation in the presence of jumps
-
BARNDORFF-NIELSEN, O. E., SHEPHARD, N. AND WINKEL, M. (2006). Limit theorems for multipower variation in the presence of jumps. Stoch. Process. Appl. 116, 796-806.
-
(2006)
Stoch. Process. Appl
, vol.116
, pp. 796-806
-
-
BARNDORFF-NIELSEN, O.E.1
SHEPHARD, N.2
WINKEL, M.3
-
9
-
-
33646525285
-
Limit theorems for bipower variation in financial econometrics
-
BARNDORFF-NIELSEN, O. E., GRAVERSEN, S. E., JACOD, J. AND SHEPHARD, N. (2006). Limit theorems for bipower variation in financial econometrics. Econometric Theory 22, 677-719.
-
(2006)
Econometric Theory
, vol.22
, pp. 677-719
-
-
BARNDORFF-NIELSEN, O.E.1
GRAVERSEN, S.E.2
JACOD, J.3
SHEPHARD, N.4
-
10
-
-
33745660397
-
A central limit theorem for realised power and bipower variations of continuous semimartingales
-
eds Yu. Kabanov et al. Springer, Berlin, pp
-
BARNDORFF-NIELSEN, O. E. et al. (2006). A central limit theorem for realised power and bipower variations of continuous semimartingales. In Stochastic Calculus to Mathematical Finance, eds Yu. Kabanov et al. Springer, Berlin, pp. 33-68.
-
(2006)
Stochastic Calculus to Mathematical Finance
, pp. 33-68
-
-
BARNDORFF-NIELSEN, O.E.1
-
11
-
-
64249106657
-
Arbitrage with fractional Brownian motion? Theory Stoch
-
BENDER, C., SOTTINEN, T. AND VALKEYLA, E. (2007). Arbitrage with fractional Brownian motion? Theory Stoch. Process. 13, 23-34.
-
(2007)
Process
, vol.13
, pp. 23-34
-
-
BENDER, C.1
SOTTINEN, T.2
VALKEYLA, E.3
-
13
-
-
0032356952
-
Long memory in continous-time stochastic volatility models
-
COMTE, F. AND RENAULT, E. (1998). Long memory in continous-time stochastic volatility models. Math. Finance 8, 291-323.
-
(1998)
Math. Finance
, vol.8
, pp. 291-323
-
-
COMTE, F.1
RENAULT, E.2
-
14
-
-
33845455397
-
Power variation of some integral fractional processes
-
CORCUERA, J. M., NUALART, D. AND WOERNER, J. H. C (2006). Power variation of some integral fractional processes. Bernoulli 12, 713-735.
-
(2006)
Bernoulli
, vol.12
, pp. 713-735
-
-
CORCUERA, J.M.1
NUALART, D.2
WOERNER, J.H.C.3
-
15
-
-
84869272910
-
-
CULTAND, N. J., KOPP, P. E. AND WILLINGER, W (1995). Stock price returns and the Joseph effect: a fractional version of the Black - Scholes model. In Seminar of Stochastic Analysis, Random Fields and Applications (Ascona 1993; Progress Prob. 36), eds E. Bolthausen et al. Birkhäuser, Berlin, pp. 327-351.
-
CULTAND, N. J., KOPP, P. E. AND WILLINGER, W (1995). Stock price returns and the Joseph effect: a fractional version of the Black - Scholes model. In Seminar of Stochastic Analysis, Random Fields and Applications (Ascona 1993; Progress Prob. 36), eds E. Bolthausen et al. Birkhäuser, Berlin, pp. 327-351.
-
-
-
-
16
-
-
0000138698
-
Convergence en loi des H-variations d'un processus gaussien stationnaire sur M.
-
GUYON, L. AND LEON, J. (1989). Convergence en loi des H-variations d'un processus gaussien stationnaire sur M. Ann. Inst. H. Poincaré Prob. Statist. 25, 265-282.
-
(1989)
Ann. Inst. H. Poincaré Prob. Statist
, vol.25
, pp. 265-282
-
-
GUYON, L.1
LEON, J.2
-
17
-
-
18844415891
-
Renormalized self-intersection local time for fractional Brownian motion
-
HU, Y. AND NUALART, D. (2005). Renormalized self-intersection local time for fractional Brownian motion. Ann. Prob. 33, 948-983.
-
(2005)
Ann. Prob
, vol.33
, pp. 948-983
-
-
HU, Y.1
NUALART, D.2
-
18
-
-
39149086045
-
Asymptotic properties of realized power variations and related functionals of semimartingales
-
JACOD, J. (2008). Asymptotic properties of realized power variations and related functionals of semimartingales. Stock. Process. Appl. 118, 517-559.
-
(2008)
Stock. Process. Appl
, vol.118
, pp. 517-559
-
-
JACOD, J.1
-
20
-
-
64249100577
-
Testing for common arrival of jumps in discretely-observedmultidimensional processes
-
To appear in
-
JACOD, J. AND TODOROV, V. (2009). Testing for common arrival of jumps in discretely-observedmultidimensional processes. To appear in Ann. Statist..
-
(2009)
Ann. Statist
-
-
JACOD, J.1
TODOROV, V.2
-
21
-
-
42649124919
-
A note on the central limit theorem for bipower variation of general functions
-
KINNEBROCK, S. AND PODOLSKIJ, M. (2008). A note on the central limit theorem for bipower variation of general functions. Stoch. Process. Appl. 118, 1056-1070.
-
(2008)
Stoch. Process. Appl
, vol.118
, pp. 1056-1070
-
-
KINNEBROCK, S.1
PODOLSKIJ, M.2
-
22
-
-
64249132864
-
Non-central convergence of multiple integrals
-
To appear in
-
NOURDIN, I. AND PECCATI, G. (2009). Non-central convergence of multiple integrals. To appear in Ann. Prob..
-
(2009)
Ann. Prob
-
-
NOURDIN, I.1
PECCATI, G.2
-
24
-
-
14944377936
-
Central limit theorems for sequences of multiple stochastic integrals
-
NUALART, D. AND PECCATI, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Prob. 33, 177-193.
-
(2005)
Ann. Prob
, vol.33
, pp. 177-193
-
-
NUALART, D.1
PECCATI, G.2
-
25
-
-
39149144861
-
Central limit theorems for multiple stochastic integrals and Malliavin calculus
-
NUALART, D. AND ORTIZ-LATORRE, S. (2008). Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Process. Appl. 118, 614-628.
-
(2008)
Stoch. Process. Appl
, vol.118
, pp. 614-628
-
-
NUALART, D.1
ORTIZ-LATORRE, S.2
-
26
-
-
85007107687
-
Gaussian limits for vector-valued multiple stochastic integrals
-
Séminaire de Probabilités XXXVIII, eds M. Emery et al. Springer, Berlin, pp
-
PECCATI, G. AND TUDOR, C. A. (2005). Gaussian limits for vector-valued multiple stochastic integrals. In Séminaire de Probabilités XXXVIII (Lecture Notes Math. 1857), eds M. Emery et al. Springer, Berlin, pp. 247-262.
-
(2005)
Lecture Notes Math
, vol.1857
, pp. 247-262
-
-
PECCATI, G.1
TUDOR, C.A.2
-
27
-
-
0000951165
-
On stable sequences of events
-
RÉNYI, A. (1963). On stable sequences of events. Sankhyā A 25, 293-302.
-
(1963)
Sankhyā A
, vol.25
, pp. 293-302
-
-
RÉNYI, A.1
-
28
-
-
84869275529
-
Inference for the jump part of quadratic variation of Itô semimartingales
-
To appear in
-
VERAART, A. (2009). Inference for the jump part of quadratic variation of Itô semimartingales. To appear in Econometric Theory.
-
(2009)
Econometric Theory
-
-
VERAART, A.1
-
29
-
-
14244253935
-
Variational sums and power variation: A unifying approach to model selection and estimation in semimartingale models
-
WOERNER, J. H. C. (2003). Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models. Statist. Decisions 21, 47-68.
-
(2003)
Statist. Decisions
, vol.21
, pp. 47-68
-
-
WOERNER, J.H.C.1
-
30
-
-
14244251033
-
Estimation of integrated volatility in stochastic volatility models
-
WOERNER, J. H. C. (2005). Estimation of integrated volatility in stochastic volatility models. Appl. Stoch. Models Business Industry 21, 27-44.
-
(2005)
Appl. Stoch. Models Business Industry
, vol.21
, pp. 27-44
-
-
WOERNER, J.H.C.1
-
31
-
-
33645976274
-
Power and multipower variation: Inference for high frequency data
-
eds A. N. Shiryaev et al. Springer, New York, pp
-
WOERNER, J. H. C. (2006). Power and multipower variation: inference for high frequency data. In Stochastic Finance, eds A. N. Shiryaev et al. Springer, New York, pp. 343-364.
-
(2006)
Stochastic Finance
, pp. 343-364
-
-
WOERNER, J.H.C.1
-
32
-
-
34548037225
-
Inference in Lévy-type stochastic volatility models
-
WOERNER, J. H. C. (2007). Inference in Lévy-type stochastic volatility models. Adv. Appl. Prob. 39, 531-549.
-
(2007)
Adv. Appl. Prob
, vol.39
, pp. 531-549
-
-
WOERNER, J.H.C.1
-
34
-
-
0000821514
-
An inequality of the Hölder type, connected with Stieltjes integration
-
YOUNG, L. C. (1936). An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67, 251-282.
-
(1936)
Acta Math
, vol.67
, pp. 251-282
-
-
YOUNG, L.C.1
|