메뉴 건너뛰기




Volumn , Issue , 2013, Pages 100-109

Aggregating ContinuousWord Embeddings for Information Retrieval

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION RETRIEVAL;

EID: 85121825653     PISSN: 0736587X     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (77)

References (42)
  • 1
    • 33750388702 scopus 로고    scopus 로고
    • Probabilistic models of information retrieval based on measuring the divergence from randomness
    • Gianni Amati and Cornelis Joost Van Rijsbergen. 2002. Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Trans. Inf. Syst., 20(4):357-389.
    • (2002) ACM Trans. Inf. Syst , vol.20 , Issue.4 , pp. 357-389
    • Amati, Gianni1    Joost Van Rijsbergen, Cornelis2
  • 8
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. 2011. The devil is in the details: An evaluation of recent feature encoding methods. In BMVC.
    • (2011) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 9
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston. 2008. A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML.
    • (2008) ICML
    • Collobert, R.1    Weston, J.2
  • 11
    • 0345120094 scopus 로고
    • Improving Information Retrieval with Latent Semantic Indexing
    • Scott Deerwester. 1988. Improving Information Retrieval with Latent Semantic Indexing. In Proceedings of (ASIS '88).
    • (1988) Proceedings of (ASIS '88)
    • Deerwester, Scott1
  • 12
    • 85162328823 scopus 로고    scopus 로고
    • Multi-view learning of word embeddings via cca
    • Paramveer S. Dhillon, Dean Foster, and Lyle Ungar. 2011. Multi-view learning of word embeddings via cca. In NIPS, volume 24.
    • (2011) NIPS , vol.24
    • Dhillon, Paramveer S.1    Foster, Dean2    Ungar, Lyle3
  • 13
    • 80053452684 scopus 로고    scopus 로고
    • Sparse additive generative models of text
    • Lise Getoor and Tobias Scheffer, editors, pages Omnipress
    • Jacob Eisenstein, Amr Ahmed, and Eric P. Xing. 2011. Sparse additive generative models of text. In Lise Getoor and Tobias Scheffer, editors, ICML, pages 1041-1048. Omnipress.
    • (2011) ICML , pp. 1041-1048
    • Eisenstein, Jacob1    Ahmed, Amr2    Xing, Eric P.3
  • 14
    • 85121820187 scopus 로고    scopus 로고
    • Improving "bag-ofkeypoints" image categorisation: Generative models and pdf-kernels. Technical report, University of Southampton. Éric Gaussier and Cyril Goutte. 2005. Relation between PLSA and NMF and implications
    • Jason Farquhar, Sandor Szedmak, Hongying Meng, and John Shawe-Taylor. 2005. Improving "bag-ofkeypoints" image categorisation: Generative models and pdf-kernels. Technical report, University of Southampton. Éric Gaussier and Cyril Goutte. 2005. Relation between PLSA and NMF and implications. In SIGIR.
    • (2005) SIGIR
    • Farquhar, Jason1    Szedmak, Sandor2    Meng, Hongying3    Shawe-Taylor, John4
  • 18
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing
    • ACM
    • Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In SIGIR. ACM.
    • (1999) SIGIR
    • Hofmann, Thomas1
  • 19
    • 84898996741 scopus 로고    scopus 로고
    • Learning the similarity of documents: An information geometric approach to document retrieval and categorization
    • 2004. TDT: Annotation manual version 1.2
    • T. Hofmann. 2000. Learning the similarity of documents: An information geometric approach to document retrieval and categorization. In Neural Information Processing Systems. http://www.ldc.upenn.edu/ProjectsTDT2004. 2004. TDT: Annotation manual - version 1.2.
    • (2000) Neural Information Processing Systems
    • Hofmann, T.1
  • 21
    • 84898982939 scopus 로고    scopus 로고
    • Exploiting generative models in discriminative classifiers
    • Cambridge, MA, USA. MIT Press
    • Tommi S. Jaakkola and David Haussler. 1999. Exploiting generative models in discriminative classifiers. In NIPS, Cambridge, MA, USA. MIT Press.
    • (1999) NIPS
    • Jaakkola, Tommi S.1    Haussler, David2
  • 23
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • October
    • D. D. Lee and H. S. Seung. 1999. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, October.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D. D.1    Seung, H. S.2
  • 28
    • 1542370048 scopus 로고    scopus 로고
    • Experiments Using the Lemur Toolkit
    • Paul Ogilvie and James P. Callan. 2001. Experiments Using the Lemur Toolkit. In TREC.
    • (2001) TREC
    • Ogilvie, Paul1    Callan, James P.2
  • 29
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • Florent Perronnin and Christopher R. Dance. 2007. Fisher kernels on visual vocabularies for image categorization. In CVPR.
    • (2007) CVPR
    • Perronnin, Florent1    Dance, Christopher R.2
  • 32
    • 0032268440 scopus 로고    scopus 로고
    • A language modeling approach to information retrieval
    • ACM
    • Jay M. Ponte and W. Bruce Croft. 1998. A language modeling approach to information retrieval. In SIGIR, pages 275-281. ACM.
    • (1998) SIGIR , pp. 275-281
    • Ponte, Jay M.1    Bruce Croft, W.2
  • 36
    • 48349135120 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih. 2007. Probabilistic matrix factorization. In NIPS.
    • (2007) NIPS
    • Salakhutdinov, R.1    Mnih, A.2
  • 39
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • Joseph P. Turian, Lev-Arie Ratinov, and Yoshua Bengio. 2010. Word representations: A simple and general method for semi-supervised learning. In ACL, pages 384-394.
    • (2010) ACL , pp. 384-394
    • Turian, Joseph P.1    Ratinov, Lev-Arie2    Bengio, Yoshua3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.