메뉴 건너뛰기




Volumn , Issue , 2011, Pages 685-694

Regularized latent semantic indexing

Author keywords

Regularization; Sparse methods; Topic modeling

Indexed keywords

INDEXING (OF INFORMATION); INFORMATION RETRIEVAL;

EID: 80052122601     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2009916.2010008     Document Type: Conference Paper
Times cited : (73)

References (36)
  • 1
    • 67049100147 scopus 로고    scopus 로고
    • On-line lda: Adaptive topic models for mining text streams with applications to topic detection and tracking
    • L. AlSumait, D. Barbara, and C. Domeniconi. On-line lda: Adaptive topic models for mining text streams with applications to topic detection and tracking. In ICDM, 2008.
    • (2008) ICDM
    • AlSumait, L.1    Barbara, D.2    Domeniconi, C.3
  • 2
    • 78649698593 scopus 로고    scopus 로고
    • Asynchronous distributed estimation of topic models for document analysis
    • A. Asuncion, P. Smyth, and M. Welling. Asynchronous distributed estimation of topic models for document analysis. Statistical Methodology, 2011.
    • (2011) Statistical Methodology
    • Asuncion, A.1    Smyth, P.2    Welling, M.3
  • 3
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, 3:993-1022, 2003.
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.Y.2    Jordan, M.I.3
  • 4
    • 55849139091 scopus 로고    scopus 로고
    • Challenges and advances in parallel sparse matrix-matrix multiplication
    • A. Buluc and J. R. Gilbert. Challenges and advances in parallel sparse matrix-matrix multiplication. In ICPP, pages 503-510, 2008.
    • (2008) ICPP , pp. 503-510
    • Buluc, A.1    Gilbert, J.R.2
  • 5
    • 84864039510 scopus 로고    scopus 로고
    • Learning to rank with nonsmooth cost functions
    • C. J. Burges, R. Ragno, and Q. V. Le. Learning to rank with nonsmooth cost functions. In NIPS 19, 2007.
    • (2007) NIPS 19
    • Burges, C.J.1    Ragno, R.2    Le, Q.V.3
  • 9
    • 85030321143 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean, S. Ghemawat, and G. Inc. Mapreduce: simplified data processing on large clusters. In OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2    Inc, G.3
  • 11
    • 41249089920 scopus 로고    scopus 로고
    • On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing semantic indexing
    • C. Ding, T. Li, and W. Peng. On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing semantic indexing. COMPUT STAT DATA AN, 52:3913-3927, 2008.
    • (2008) Comput Stat Data An , vol.52 , pp. 3913-3927
    • Ding, C.1    Li, T.2    Peng, W.3
  • 14
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: The bridge versus the lasso
    • W. J. Fu. Penalized regressions: The bridge versus the lasso. J COMPUT GRAPH STAT, 7:397-416, 1998.
    • (1998) J Comput Graph Stat , vol.7 , pp. 397-416
    • Fu, W.J.1
  • 15
    • 85162005069 scopus 로고    scopus 로고
    • Online learning for latent dirichlet allocation
    • M. D. Hoffman, D. M. Blei, and F. Bach. Online learning for latent dirichlet allocation. In NIPS, 2010.
    • (2010) NIPS
    • Hoffman, M.D.1    Blei, D.M.2    Bach, F.3
  • 16
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing
    • T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, pages 50-57, 1999.
    • (1999) SIGIR , pp. 50-57
    • Hofmann, T.1
  • 17
    • 80052130640 scopus 로고    scopus 로고
    • Learning the parts of objects with nonnegative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects with nonnegative matrix factorization. Nature, 401:391-407, 1999.
    • (1999) Nature , vol.401 , pp. 391-407
    • Lee, D.D.1    Seung, H.S.2
  • 18
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS 13, pages 556-562. 2001.
    • (2001) NIPS 13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 19
    • 84864036295 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In NIPS, pages 801-808. 2007.
    • (2007) NIPS , pp. 801-808
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.Y.4
  • 20
    • 77954604765 scopus 로고    scopus 로고
    • Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce
    • C. Liu, H. chih Yang, J. Fan, L.-W. He, and Y.-M. Wang. Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce. In WWW, pages 681-690, 2010.
    • (2010) WWW , pp. 681-690
    • Liu, C.1    Chih Yang, H.2    Fan, J.3    He, L.-W.4    Wang, Y.-M.5
  • 21
    • 80052111620 scopus 로고    scopus 로고
    • Plda+: Parallel latent dirichlet allocation with data placement and pipeline processing
    • Z. Liu, Y. Zhang, and E. Y. Chang. Plda+: Parallel latent dirichlet allocation with data placement and pipeline processing. In TIST, 2010.
    • (2010) TIST
    • Liu, Z.1    Zhang, Y.2    Chang, E.Y.3
  • 23
    • 36348944093 scopus 로고    scopus 로고
    • Organizing the OCA: Learning faceted subjects from a library of digital books
    • DOI 10.1145/1255175.1255249, Proceedings of the 7th ACM/IEEE Joint Conference on Digital Libraries, JCDL 2007: Building and Sustaining the Digital Environment
    • D. M. Mimno and McCallum. Organizing the oca: Learning faceted subjects from a library of digital books. In JCDL, pages 376-385, 2007. (Pubitemid 350158008)
    • (2007) Proceedings of the ACM International Conference on Digital Libraries , pp. 376-385
    • Mimno, D.1    McCallum, A.2
  • 24
    • 85161988453 scopus 로고    scopus 로고
    • Distributed inference for latent dirichlet allocation
    • D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed inference for latent dirichlet allocation. In NIPS, 2008.
    • (2008) NIPS
    • Newman, D.1    Asuncion, A.2    Smyth, P.3    Welling, M.4
  • 25
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • DOI 10.1016/S0042-6989(97)00169-7, PII S0042698997001697
    • B. A. Olshausen and D. J. Fieldt. Sparse coding with an overcomplete basis set: a strategy employed by v1. VISION RES, 37:3311-3325, 1997. (Pubitemid 27493805)
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 26
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • M. Osborne, B. Presnell, and B. Turlach. A new approach to variable selection in least squares problems. IMA J NUMER ANAL, 2000.
    • (2000) Ima J Numer Anal
    • Osborne, M.1    Presnell, B.2    Turlach, B.3
  • 28
    • 78349258863 scopus 로고    scopus 로고
    • Double sparsity: Learning sparse dictionaries for sparse signal approximation
    • R. Rubinstein, M. Zibulevsky, and M. Elad. Double sparsity: Learning sparse dictionaries for sparse signal approximation. IEEE T SIGNAL PROCES, pages 1553-1564, 2008.
    • (2008) IEEE t Signal Proces , pp. 1553-1564
    • Rubinstein, R.1    Zibulevsky, M.2    Elad, M.3
  • 29
    • 0016572913 scopus 로고
    • A vector space model for automatic indexing
    • G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commun. ACM, 18:613-620, 1975.
    • (1975) Commun. ACM , vol.18 , pp. 613-620
    • Salton, G.1    Wong, A.2    Yang, C.S.3
  • 30
    • 56049086197 scopus 로고    scopus 로고
    • A unified view of matrix factorization models
    • A. P. Singh and G. J. Gordon. A unified view of matrix factorization models. In ECMLPKDD, pages 358-373, 2008.
    • (2008) ECMLPKDD , pp. 358-373
    • Singh, A.P.1    Gordon, G.J.2
  • 31
    • 80052119994 scopus 로고    scopus 로고
    • An architecture for parallel topic models
    • A. Smola and S. Narayanamurthy. An architecture for parallel topic models. Proc. VLDB Endow., 3:703-710, 2010.
    • (2010) Proc. VLDB Endow. , vol.3 , pp. 703-710
    • Smola, A.1    Narayanamurthy, S.2
  • 33
    • 77956499537 scopus 로고    scopus 로고
    • Decoupling sparsity and smoothness in the discrete hierachical dirichlet process
    • C. Wang and D. M. Blei. Decoupling sparsity and smoothness in the discrete hierachical dirichlet process. In NIPS, 2009.
    • (2009) NIPS
    • Wang, C.1    Blei, D.M.2
  • 34
    • 70350637398 scopus 로고    scopus 로고
    • Plda: Parallel latent dirichlet allocation for large-scale applications
    • Y. Wang, H. Bai, M. Stanton, W. yen Chen, and E. Y. Chang. Plda: Parallel latent dirichlet allocation for large-scale applications. In AAIM, pages 301-314, 2009.
    • (2009) AAIM , pp. 301-314
    • Wang, Y.1    Bai, H.2    Stanton, M.3    Yen Chen, W.4    Chang, E.Y.5
  • 35
    • 33750327222 scopus 로고    scopus 로고
    • Lda-based document models for ad-hoc retrieval
    • X. Wei and B. W. Croft. Lda-based document models for ad-hoc retrieval. In SIGIR, pages 178-185, 2006.
    • (2006) SIGIR , pp. 178-185
    • Wei, X.1    Croft, B.W.2
  • 36
    • 79955691941 scopus 로고    scopus 로고
    • Parallel inference for latent dirichlet allocation on graphics processing units
    • F. Yan, N. Xu, and Y. A. Qi. Parallel inference for latent dirichlet allocation on graphics processing units. In NIPS, pages 2134-2142, 2009.
    • (2009) NIPS , pp. 2134-2142
    • Yan, F.1    Xu, N.2    Qi, Y.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.