-
1
-
-
0004075585
-
Fourth-order 2N-storage Runge-Kutta schemes
-
Carpenter, M., and Kennedy, C. (1994).Fourth-order 2N-storage Runge-Kutta schemes, NASA TM 109112, NASA Langley Research Center.
-
(1994)
NASA TM 109112
-
-
Carpenter, M.1
Kennedy, C.2
-
3
-
-
84966246413
-
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework
-
Cockburn, B., and Shu, C.-W. (1989). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework,Math. Comput. 52, 411–435. DOI: 10.2307/2008474
-
(1989)
Math. Comput.
, vol.52
, pp. 411-435
-
-
Cockburn, B.1
Shu, C.-W.2
-
4
-
-
28844447972
-
Stepsize Restrictions for the total variation diminishing property in general Runge-Kutta methods
-
Report MI 2002-21
-
Ferracina, L., and Spijker, M.N. (2002). Stepsize Restrictions for the total variation diminishing property in general Runge-Kutta methods.Num. Anal. Reports of Leiden University, Report MI 2002-21.
-
(2002)
Num. Anal. Reports of Leiden University
-
-
Ferracina, L.1
Spijker, M.N.2
-
5
-
-
11244318599
-
An extension and analysis of the Shu-Osher representation of Runge-Kutta method
-
Ferracina, L., and Spijker, M.N. (2005). An extension and analysis of the Shu-Osher representation of Runge-Kutta method.Math. Comput. 74, 201–219. DOI: 10.1090/S0025-5718-04-01664-3
-
(2005)
Math. Comput.
, vol.74
, pp. 201-219
-
-
Ferracina, L.1
Spijker, M.N.2
-
6
-
-
0347900506
-
Strong stability preserving properties of Runge-Kutta time discretization methods for linear constant coefficient operators
-
Gottlieb, S., and Gottlieb, L.-J. (2003).Strong stability preserving properties of Runge-Kutta time discretization methods for linear constant coefficient operators, J. Sci. Compu. 18, 83–110. DOI: 10.1023/A:1020338228736
-
(2003)
J. Sci. Compu.
, vol.18
, pp. 83-110
-
-
Gottlieb, S.1
Gottlieb, L.-J.2
-
7
-
-
0032345207
-
Total variation diminishing Runge-Kutta schemes
-
Gottlieb, S., and Shu, C.-W. (1998). Total variation diminishing Runge-Kutta schemes,Math. Compu. 67, 73–85. DOI: 10.1090/S0025-5718-98-00913-2
-
(1998)
Math. Compu.
, vol.67
, pp. 73-85
-
-
Gottlieb, S.1
Shu, C.-W.2
-
8
-
-
0035273564
-
Strong stability preserving high-order time discretization methods
-
Gottlieb, S., Shu, C.-W., and Tadmor, E. (2001). Strong stability preserving high-order time discretization methods,SIAM Review 43, 89–112. DOI: 10.1137/S003614450036757X
-
(2001)
SIAM Review
, vol.43
, pp. 89-112
-
-
Gottlieb, S.1
Shu, C.-W.2
Tadmor, E.3
-
9
-
-
84966257131
-
The CFL condition for spectral approximations to hyperbolic initial-boundary value problems
-
Gottlieb, D., and Tadmor, E. (1995). The CFL condition for spectral approximations to hyperbolic initial-boundary value problems,Math. Comput. 56, 565–588.
-
(1995)
Math. Comput.
, vol.56
, pp. 565-588
-
-
Gottlieb, D.1
Tadmor, E.2
-
10
-
-
85168423765
-
Strong stability preserving Runge-Kutta methods for fast downwind biased discretizations, to appear inJ
-
Gottlieb, S., and Ruuth, S.J. Strong stability preserving Runge-Kutta methods for fast downwind biased discretizations, to appear inJ. Sci. Comput.
-
Sci. Comput.
-
-
Gottlieb, S.1
Ruuth, S.J.2
-
11
-
-
40749159424
-
High resolution schemes for hyperbolic conservation laws
-
Harten, A. (1983).High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49, 357–393. DOI: 10.1016/0021-9991(83)90136-5
-
(1983)
J. Comput. Phys.
, vol.49
, pp. 357-393
-
-
Harten, A.1
-
12
-
-
3042714776
-
On strong stability preserving methods
-
Higueras, I. (2004) On strong stability preserving methods.J. Sci Comput. 21, 193–223. DOI: 10.1023/B:JOMP.0000030075.59237.61
-
(2004)
J. Sci Comput.
, vol.21
, pp. 193-223
-
-
Higueras, I.1
-
14
-
-
2342460322
-
Monotonicity-preserving linear multistep methods
-
Hundsdorfer, W., Ruuth, S.J., and Spiteri, R.J. (2003). Monotonicity-preserving linear multistep methods.SIAM J. Num. Anal. 41, 605–623. DOI: 10.1137/S0036142902406326
-
(2003)
SIAM J. Num. Anal.
, vol.41
, pp. 605-623
-
-
Hundsdorfer, W.1
Ruuth, S.J.2
Spiteri, R.J.3
-
15
-
-
0034316651
-
Low storage explicit Runge-Kutta schemes for the compressible navier-stokes equations
-
Kennedy, C., Carpenter, M., and Lewis, R. (2000). Low storage explicit Runge-Kutta schemes for the compressible navier-stokes equations,Appl. Nume. Math. 35, 177–219. DOI: 10.1016/S0168-9274(99)00141-5
-
(2000)
Appl. Nume. Math.
, vol.35
, pp. 177-219
-
-
Kennedy, C.1
Carpenter, M.2
Lewis, R.3
-
16
-
-
0001813542
-
Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems
-
Kraaijevanger, J.F.B.M. (1986).Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems, Numerische Mathematik 48, 303–322. DOI: 10.1007/BF01389477
-
(1986)
Numerische Mathematik
, vol.48
, pp. 303-322
-
-
Kraaijevanger, J.F.B.M.1
-
17
-
-
0000625694
-
Contractivity of Runge-Kutta methods
-
Kraaijevanger, J.F.B.M. (1991).Contractivity of Runge-Kutta methods, BIT 31, 482–528. DOI: 10.1007/BF01933264
-
(1991)
BIT
, vol.31
, pp. 482-528
-
-
Kraaijevanger, J.F.B.M.1
-
19
-
-
84966211896
-
Contractivity preserving implicit linear multi step methods
-
Lenferink, H.W.J. (1991). Contractivity preserving implicit linear multi step methods,Math. Comput. 56, 177–199. DOI: 10.2307/2008536
-
(1991)
Math. Comput.
, vol.56
, pp. 177-199
-
-
Lenferink, H.W.J.1
-
20
-
-
0032014411
-
From semi-discrete to fully discrete: stability of Runge-Kutta schemes by the energy method
-
Levy, D. and Tadmor, E. (1998). From semi-discrete to fully discrete: stability of Runge-Kutta schemes by the energy method.SIAM Review,40, 40–73. DOI: 10.1137/S0036144597316255
-
(1998)
SIAM Review
, vol.40
, pp. 40-73
-
-
Levy, D.1
Tadmor, E.2
-
21
-
-
0000592595
-
Weighted essentially non-oscillatory schemes
-
Liu, X-D., Osher, S., and Chan, T. (1994). Weighted essentially non-oscillatory schemesJ. Comput. Phys. 115 (1), 200. DOI: 10.1006/jcph.1994.1187
-
(1994)
J. Comput. Phys.
, vol.115
, Issue.1
, pp. 200
-
-
Liu, X.-D.1
Osher, S.2
Chan, T.3
-
22
-
-
28144455569
-
Non-oscillatory central differencing for hyperbolic conservation laws
-
Nessyahu, H., and Tadmor, E. (1990). Non-oscillatory central differencing for hyperbolic conservation laws,J. Comp. Phys. 87, 408–463. DOI: 10.1016/0021-9991(90)90260-8
-
(1990)
J. Comp. Phys.
, vol.87
, pp. 408-463
-
-
Nessyahu, H.1
Tadmor, E.2
-
23
-
-
0021513288
-
High resolution schemes and the entropy condition
-
Osher, S., and Chakravarthy, S. (1984). High resolution schemes and the entropy condition.SIAM J. Num. Anal. 21, 955–984. DOI: 10.1137/0721060
-
(1984)
SIAM J. Num. Anal.
, vol.21
, pp. 955-984
-
-
Osher, S.1
Chakravarthy, S.2
-
24
-
-
84966232121
-
On the convergence of difference approximations to scalar conservation laws
-
Osher, S., and Tadmor, E. (1988). On the convergence of difference approximations to scalar conservation laws.Math. Comp. 50, 19–51. DOI: 10.2307/2007913
-
(1988)
Math. Comp.
, vol.50
, pp. 19-51
-
-
Osher, S.1
Tadmor, E.2
-
25
-
-
0013150498
-
Two barriers on strong-stability-preserving time discretization methods
-
Ruuth, S.J., and Spiteri, R.J. (2002). Two barriers on strong-stability-preserving time discretization methods.J. Sci. Comp. 17, 211–220. DOI: 10.1023/A:1015156832269
-
(2002)
J. Sci. Comp.
, vol.17
, pp. 211-220
-
-
Ruuth, S.J.1
Spiteri, R.J.2
-
26
-
-
14844365146
-
Downwinding in high-order strong-stability-preserving Runge-Kutta methods
-
Ruuth, S.J., and Spiteri, R.J. (2004). Downwinding in high-order strong-stability-preserving Runge-Kutta methods.SIAM J. Numer. Anal. 42, 974–996. DOI: 10.1137/S0036142902419284
-
(2004)
SIAM J. Numer. Anal.
, vol.42
, pp. 974-996
-
-
Ruuth, S.J.1
Spiteri, R.J.2
-
28
-
-
0000564951
-
Total-variation-diminishing time discretizations
-
Shu, C.-W. (1988). Total-variation-diminishing time discretizations.SIAM J. Sci. Stat. Comput. 9, 1073–1084. DOI: 10.1137/0909073
-
(1988)
SIAM J. Sci. Stat. Comput.
, vol.9
, pp. 1073-1084
-
-
Shu, C.-W.1
-
29
-
-
45449125925
-
Efficient implementation of essentially non-oscillatory shock-capturing schemes
-
Shu, C.-W., and Osher, S. (1998). Efficient implementation of essentially non-oscillatory shock-capturing schemes.J. Comput. Phy. 77, 439–471. DOI: 10.1016/0021-9991(88)90177-5
-
(1998)
J. Comput. Phy.
, vol.77
, pp. 439-471
-
-
Shu, C.-W.1
Osher, S.2
-
31
-
-
0001118530
-
A new class of optimal high-order strong-stability-preserving time discretization methods
-
Spiteri, R.J., and Ruuth, S.J., (2002). A new class of optimal high-order strong-stability-preserving time discretization methods. SIAMJ. Numer. Anal. 40, 469–491. DOI: 10.1137/S0036142901389025
-
(2002)
SIAM J. Numer. Anal.
, vol.40
, pp. 469-491
-
-
Spiteri, R.J.1
Ruuth, S.J.2
-
32
-
-
0037434586
-
Nonlinear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods
-
Spiteri, R.J., and Ruuth, S.J. (2003). Nonlinear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods.J. Math. Comput. Simul. 62, 125–135. DOI: 10.1016/S0378-4754(02)00179-9
-
(2003)
J. Math. Comput. Simul.
, vol.62
, pp. 125-135
-
-
Spiteri, R.J.1
Ruuth, S.J.2
-
33
-
-
33748538768
-
Accurate partial difference methods II: nonlinear problems
-
Strang, G. (1964). Accurate partial difference methods II: nonlinear problems.Numerische Mathematik 6, 37. DOI: 10.1007/BF01386051
-
(1964)
Numerische Mathematik
, vol.6
, pp. 37
-
-
Strang, G.1
-
35
-
-
0021513424
-
High resolution schemes using flux limiters for hyperbolic conservation laws
-
Sweby, P.K. (1984) High resolution schemes using flux limiters for hyperbolic conservation laws.SIAM J. Num. Anal. 21, 995–1011. DOI: 10.1137/0721062
-
(1984)
SIAM J. Num. Anal.
, vol.21
, pp. 995-1011
-
-
Sweby, P.K.1
-
36
-
-
0002033981
-
Approximate solutions of nonlinear conservation laws
-
Quarteroni A., (ed), Lectures Notes from CIME Course Cetraro, Italy, 1997 Lecture Notes Mathematics 1697, Springer US, Berlin
-
Tadmor, E. (1988). Approximate solutions of nonlinear conservation laws. In Quarteroni, A. (ed.), ”Advanced Numerical Approximation of Nonlinear Hyperbolic Equations,”Lectures Notes from CIME Course Cetraro, Italy, 1997 Lecture Notes in Mathematics 1697, Springer-Verlag, Berlin pp. 1–150.
-
(1988)
Advanced Numerical Approximation of Nonlinear Hyperbolic Equations
, pp. 1-150
-
-
Tadmor, E.1
-
37
-
-
0002255298
-
Low-storage Runge-Kutta schemes
-
Williamson, J.H. (1980). Low-storage Runge-Kutta schemes.J. Comput. Phys. 35, 48–56. DOI: 10.1016/0021-9991(80)90033-9
-
(1980)
J. Comput. Phys.
, vol.35
, pp. 48-56
-
-
Williamson, J.H.1
|