메뉴 건너뛰기




Volumn 13, Issue 4, 2021, Pages 1-28

Machine learning classification of mediterranean forest habitats in google earth engine based on seasonal sentinel-2 time-series and input image composition optimisation

Author keywords

Aspromonte National Park; Classification and regression tree (CART); Cloud platform; Natura 2000; Random forest (RF); Support vector machine (SVM); Vegetation indices (VIs)

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONSERVATION; DECISION TREES; DIGITAL STORAGE; ENGINES; FORESTRY; IMAGE CLASSIFICATION; REMOTE SENSING; SUPPORT VECTOR REGRESSION; SUSTAINABLE DEVELOPMENT; TIME SERIES; VEGETATION;

EID: 85100818706     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs13040586     Document Type: Article
Times cited : (136)

References (128)
  • 1
    • 51649113772 scopus 로고    scopus 로고
    • Automatic habitat classification methods based on satellite images: A practical assessment in the NW Iberia coastal mountains
    • [CrossRef]
    • Díaz Varela, R.A.; Ramil Rego, P.; Calvo Iglesias, S.; Muñoz Sobrino, C. Automatic habitat classification methods based on satellite images: A practical assessment in the NW Iberia coastal mountains. Environ. Monit. Assess. 2008, 144, 229–250. [CrossRef]
    • (2008) Environ. Monit. Assess , vol.144 , pp. 229-250
    • Díaz Varela, R.A.1    Ramil Rego, P.2    Calvo Iglesias, S.3    Muñoz Sobrino, C.4
  • 2
    • 85008165201 scopus 로고    scopus 로고
    • European Commission. Doc. Hab. 13-04/05. (accessed on 7 January 2021)
    • European Commission. Commission Note on Establishment Conservation Measures for Natura 2000 Sites. Doc. Hab. 13-04/05. 2013. Available online: https://ec.europa.eu/environment/nature/natura2000/management/docs/commission_note/comNoteconservationmeasures_EN.pdf (accessed on 7 January 2021).
    • (2013) Commission Note on Establishment Conservation Measures for Natura 2000 Sites
  • 4
    • 84949426024 scopus 로고    scopus 로고
    • An index for the assessment of degraded Mediterranean forest ecosystems
    • [CrossRef]
    • Modica, G.; Merlino, A.; Solano, F.; Mercurio, R. An index for the assessment of degraded Mediterranean forest ecosystems. For. Syst. 2015, 24, e037. [CrossRef]
    • (2015) For. Syst , vol.24 , pp. e037
    • Modica, G.1    Merlino, A.2    Solano, F.3    Mercurio, R.4
  • 5
    • 85032904159 scopus 로고    scopus 로고
    • Abandonment of traditional terraced landscape: A change detection approach (a case study in Costa Viola, Calabria, Italy)
    • [CrossRef]
    • Modica, G.; Praticò, S.; Di Fazio, S. Abandonment of traditional terraced landscape: A change detection approach (a case study in Costa Viola, Calabria, Italy). Land Degrad. Dev. 2017, 28, 2608–2622. [CrossRef]
    • (2017) Land Degrad. Dev , vol.28 , pp. 2608-2622
    • Modica, G.1    Praticò, S.2    Di Fazio, S.3
  • 6
    • 84961815144 scopus 로고    scopus 로고
    • Optical remotely sensed time series data for land cover classification: A review
    • [CrossRef]
    • Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [CrossRef]
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.116 , pp. 55-72
    • Gómez, C.1    White, J.C.2    Wulder, M.A.3
  • 7
    • 84880716138 scopus 로고    scopus 로고
    • Spatio-temporal analysis of the urban–rural gradient structure: An application in a Mediterranean mountainous landscape (Serra San Bruno, Italy)
    • [CrossRef]
    • Modica, G.; Vizzari, M.; Pollino, M.; Fichera, C.R.; Zoccali, P.; Di Fazio, S. Spatio-temporal analysis of the urban–rural gradient structure: An application in a Mediterranean mountainous landscape (Serra San Bruno, Italy). Earth Syst. Dyn. 2012, 3, 263–279. [CrossRef]
    • (2012) Earth Syst. Dyn , vol.3 , pp. 263-279
    • Modica, G.1    Vizzari, M.2    Pollino, M.3    Fichera, C.R.4    Zoccali, P.5    Di Fazio, S.6
  • 8
    • 0037500103 scopus 로고    scopus 로고
    • From space to species: Ecological applications for remote sensing
    • [CrossRef]
    • Kerr, J.T.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 2003, 18, 299–305. [CrossRef]
    • (2003) Trends Ecol. Evol , vol.18 , pp. 299-305
    • Kerr, J.T.1    Ostrovsky, M.2
  • 9
    • 85100792605 scopus 로고    scopus 로고
    • Sentinel-2 Imagery for Mapping Cork Oak (Quercus suber L.) Distribution in Calabria (Italy): Capabilities and Quantitative Estimation
    • Reggio Calabria, Italy, 22–25 May 2018; [CrossRef]
    • Modica, G.; Pollino, M.; Solano, F. Sentinel-2 Imagery for Mapping Cork Oak (Quercus suber L.) Distribution in Calabria (Italy): Capabilities and Quantitative Estimation. In Proceedings of the International Symposium on New Metropolitan Perspectives, Reggio Calabria, Italy, 22–25 May 2018; pp. 60–67. [CrossRef]
    • Proceedings of the International Symposium on New Metropolitan Perspectives , pp. 60-67
    • Modica, G.1    Pollino, M.2    Solano, F.3
  • 11
    • 85066755628 scopus 로고    scopus 로고
    • Object-based land cover classification of cork oak woodlands using UAV imagery and Orfeo Toolbox
    • [CrossRef]
    • De Luca, G.; Silva, J.M.N.; Cerasoli, S.; Araújo, J.; Campos, J.; Di Fazio, S.; Modica, G. Object-based land cover classification of cork oak woodlands using UAV imagery and Orfeo Toolbox. Remote Sens. 2019, 11, 1238. [CrossRef]
    • (2019) Remote Sens , vol.11 , pp. 1238
    • De Luca, G.1    Silva, J.M.N.2    Cerasoli, S.3    Araújo, J.4    Campos, J.5    Di Fazio, S.6    Modica, G.7
  • 12
    • 67349166675 scopus 로고    scopus 로고
    • Monitoring land cover change and ecological integrity in Canada’s national parks
    • [CrossRef]
    • Fraser, R.H.; Olthof, I.; Pouliot, D. Monitoring land cover change and ecological integrity in Canada’s national parks. Remote Sens. Environ. 2009, 113, 1397–1409. [CrossRef]
    • (2009) Remote Sens. Environ , vol.113 , pp. 1397-1409
    • Fraser, R.H.1    Olthof, I.2    Pouliot, D.3
  • 15
    • 85059936380 scopus 로고    scopus 로고
    • Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions
    • [CrossRef]
    • Steinhausen, M.J.; Wagner, P.D.; Narasimhan, B.; Waske, B. Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 595–604. [CrossRef]
    • (2018) Int. J. Appl. Earth Obs. Geoinf , vol.73 , pp. 595-604
    • Steinhausen, M.J.1    Wagner, P.D.2    Narasimhan, B.3    Waske, B.4
  • 16
    • 0034655827 scopus 로고    scopus 로고
    • Land cover mapping of large areas from satellites: Status and research priorities
    • [CrossRef]
    • Cihlar, J. Land cover mapping of large areas from satellites: Status and research priorities. Int. J. Remote Sens. 2000, 21, 1093–1114. [CrossRef]
    • (2000) Int. J. Remote Sens , vol.21 , pp. 1093-1114
    • Cihlar, J.1
  • 17
    • 0036291817 scopus 로고    scopus 로고
    • Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas
    • [CrossRef]
    • Franklin, S.E.; Wulder, M.A. Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas. Prog. Phys. Geogr. Earth Environ. 2002, 26, 173–205. [CrossRef]
    • (2002) Prog. Phys. Geogr. Earth Environ , vol.26 , pp. 173-205
    • Franklin, S.E.1    Wulder, M.A.2
  • 18
    • 85092769852 scopus 로고    scopus 로고
    • Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review
    • [CrossRef]
    • Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sens. 2020, 12, 3062. [CrossRef]
    • (2020) Remote Sens , vol.12 , pp. 3062
    • Chaves, M.E.D.1    Picoli, M.C.A.2    Sanches, I.D.3
  • 19
    • 1942452360 scopus 로고    scopus 로고
    • Remote sensing technology for mapping and monitoring land-cover and land-use change
    • [CrossRef]
    • Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004, 61, 301–325. [CrossRef]
    • (2004) Prog. Plan , vol.61 , pp. 301-325
    • Rogan, J.1    Chen, D.2
  • 20
    • 85096802535 scopus 로고    scopus 로고
    • Urban Tree Species Identification and Carbon Stock Mapping for Urban Green Planning and Management
    • [CrossRef]
    • Choudhury, A.M.; Marcheggiani, E.; Despini, F.; Costanzini, S.; Rossi, P.; Galli, A.; Teggi, S. Urban Tree Species Identification and Carbon Stock Mapping for Urban Green Planning and Management. Forests 2020, 11, 1226. [CrossRef]
    • (2020) Forests , vol.11 , pp. 1226
    • Choudhury, A.M.1    Marcheggiani, E.2    Despini, F.3    Costanzini, S.4    Rossi, P.5    Galli, A.6    Teggi, S.7
  • 21
    • 85091314741 scopus 로고
    • A Review of: “Remote Sensing, theorie en toepassingen van landobservatie (Remoie Sensing theory and applications of land observation”)
    • Edited by H, J. BUITEN and J. G. P. W. CLEVERS. Series ‘Dynamiek, indenting and bcheer van landelijke gebieden part 2. (Wageningen: Pudoe Publ., 1990) [Pp. 504] (312 figs, 38 tables, 22 colour plates. 10 supplements, glossary). [CrossRef]
    • Nossin, J.J. A Review of: “Remote Sensing, theorie en toepassingen van landobservatie (Remoie Sensing theory and applications of land observation”). Edited by H, J. BUITEN and J. G. P. W. CLEVERS. Series ‘Dynamiek, indenting and bcheer van landelijke gebieden’, part 2. (Wageningen: Pudoe Publ., 1990.) [Pp. 504 ] (312 figs, 38 tables, 22 colour plates. 10 supplements, glossary.). Int. J. Remote Sens. 1991, 12, 2173. [CrossRef]
    • (1991) Int. J. Remote Sens , vol.12 , pp. 2173
    • Nossin, J.J.1
  • 22
    • 85047513392 scopus 로고    scopus 로고
    • A global moderate resolution dataset of gross primary production of vegetation for 2000–2016
    • [CrossRef]
    • Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 2017, 4, 170165. [CrossRef]
    • (2017) Sci. Data , vol.4 , pp. 170165
    • Zhang, Y.1    Xiao, X.2    Wu, X.3    Zhou, S.4    Zhang, G.5    Qin, Y.6    Dong, J.7
  • 23
    • 85089692898 scopus 로고    scopus 로고
    • Generating a Spatio-Temporal Complete 30 m Leaf Area Index from Field and Remote Sensing Data
    • [CrossRef]
    • Zhou, H.; Wang, C.; Zhang, G.; Xue, H.; Wang, J.; Wan, H. Generating a Spatio-Temporal Complete 30 m Leaf Area Index from Field and Remote Sensing Data. Remote Sens. 2020, 12, 2394. [CrossRef]
    • (2020) Remote Sens , vol.12 , pp. 2394
    • Zhou, H.1    Wang, C.2    Zhang, G.3    Xue, H.4    Wang, J.5    Wan, H.6
  • 24
    • 85010281688 scopus 로고    scopus 로고
    • Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening?
    • (accessed on 7 January 2021). [CrossRef]
    • Zhang, Y.L.; Song, C.H.; Band, L.E.; Sun, G.; Li, J.X. Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening? Remote Sens. Environ. 2017, 191, 145–155. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0034425716304977 (accessed on 7 January 2021). [CrossRef]
    • (2017) Remote Sens. Environ , vol.191 , pp. 145-155
    • Zhang, Y.L.1    Song, C.H.2    Band, L.E.3    Sun, G.4    Li, J.X.5
  • 25
    • 85079009179 scopus 로고    scopus 로고
    • Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery
    • [CrossRef]
    • Bolton, D.K.; Gray, J.M.; Melaas, E.K.; Moon, M.; Eklundh, L.; Friedl, M.A. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sens. Environ. 2020, 240, 111685. [CrossRef]
    • (2020) Remote Sens. Environ , vol.240 , pp. 111685
    • Bolton, D.K.1    Gray, J.M.2    Melaas, E.K.3    Moon, M.4    Eklundh, L.5    Friedl, M.A.6
  • 27
    • 85010648872 scopus 로고    scopus 로고
    • High-resolution mapping of global surface water and its long-term changes
    • (accessed on 7 January 2021). [CrossRef] [PubMed]
    • Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. Available online: http://www.nature.com/articles/nature20584 (accessed on 7 January 2021). [CrossRef] [PubMed]
    • (2016) Nature , vol.540 , pp. 418-422
    • Pekel, J.-F.1    Cottam, A.2    Gorelick, N.3    Belward, A.S.4
  • 28
    • 85029388912 scopus 로고    scopus 로고
    • A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring
    • Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902.
    • (2017) Remote Sens , vol.9 , pp. 902
    • Li, J.1    Roy, D.P.2
  • 29
    • 0442298875 scopus 로고    scopus 로고
    • Mapping and indicator approaches for the assessment of habitats at different scales using remote sensing and GIS methods
    • [CrossRef]
    • Weiers, S.; Bock, M.; Wissen, M.; Rossner, G. Mapping and indicator approaches for the assessment of habitats at different scales using remote sensing and GIS methods. Landsc. Urban Plan. 2004, 67, 43–65. [CrossRef]
    • (2004) Landsc. Urban Plan , vol.67 , pp. 43-65
    • Weiers, S.1    Bock, M.2    Wissen, M.3    Rossner, G.4
  • 30
    • 85049071030 scopus 로고    scopus 로고
    • Analysis of recent changes in natural habitat types in the Apuseni Mountains (Romania), using multi-temporal Landsat satellite imagery (1986–2015)
    • [CrossRef]
    • Cheţan, M.A.; Dornik, A.; Urdea, P. Analysis of recent changes in natural habitat types in the Apuseni Mountains (Romania), using multi-temporal Landsat satellite imagery (1986–2015). Appl. Geogr. 2018, 97, 161–175. [CrossRef]
    • (2018) Appl. Geogr , vol.97 , pp. 161-175
    • Cheţan, M.A.1    Dornik, A.2    Urdea, P.3
  • 31
    • 20844448598 scopus 로고    scopus 로고
    • Object-oriented methods for habitat mapping at multiple scales–Case studies from Northern Germany and Wye Downs, UK
    • [CrossRef]
    • Bock, M.; Xofis, P.; Mitchley, J.; Rossner, G.; Wissen, M. Object-oriented methods for habitat mapping at multiple scales–Case studies from Northern Germany and Wye Downs, UK. J. Nat. Conserv. 2005, 13, 75–89. [CrossRef]
    • (2005) J. Nat. Conserv , vol.13 , pp. 75-89
    • Bock, M.1    Xofis, P.2    Mitchley, J.3    Rossner, G.4    Wissen, M.5
  • 32
    • 76449104407 scopus 로고    scopus 로고
    • Comparison of remote sensing change detection techniques for assessing hurricane damage to forests
    • [CrossRef]
    • Wang, F.; Xu, Y.J. Comparison of remote sensing change detection techniques for assessing hurricane damage to forests. Environ. Monit. Assess. 2009, 162, 311–326. [CrossRef]
    • (2009) Environ. Monit. Assess , vol.162 , pp. 311-326
    • Wang, F.1    Xu, Y.J.2
  • 33
    • 79951942849 scopus 로고    scopus 로고
    • Remote sensing based indicators of changes in a mountain rural landscape of Northeast Portugal
    • [CrossRef]
    • Pôças, I.; Cunha, M.; Pereira, L.S. Remote sensing based indicators of changes in a mountain rural landscape of Northeast Portugal. Appl. Geogr. 2011, 31, 871–880. [CrossRef]
    • (2011) Appl. Geogr , vol.31 , pp. 871-880
    • Pôças, I.1    Cunha, M.2    Pereira, L.S.3
  • 34
    • 85047564000 scopus 로고    scopus 로고
    • Spatiotemporal analysis of Landsat-8 and Sentinel-2 data to support monitoring of dryland ecosystems
    • [CrossRef]
    • Pastick, N.J.; Wylie, B.K.; Wu, Z. Spatiotemporal analysis of Landsat-8 and Sentinel-2 data to support monitoring of dryland ecosystems. Remote Sens. 2018, 10, 791. [CrossRef]
    • (2018) Remote Sens , vol.10 , pp. 791
    • Pastick, N.J.1    Wylie, B.K.2    Wu, Z.3
  • 35
    • 84864766187 scopus 로고    scopus 로고
    • Monitoring gradual ecosystem change using Landsat time series analyses: Case studies in selected forest and rangeland ecosystems
    • [CrossRef]
    • Vogelmann, J.E.; Xian, G.; Homer, C.G.; Tolk, B. Monitoring gradual ecosystem change using Landsat time series analyses: Case studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 2012, 122, 92–105. [CrossRef]
    • (2012) Remote Sens. Environ , vol.122 , pp. 92-105
    • Vogelmann, J.E.1    Xian, G.2    Homer, C.G.3    Tolk, B.4
  • 36
    • 85027950564 scopus 로고    scopus 로고
    • First Results From the Phenology-Based Synthesis Classifier Using Landsat 8 Imagery
    • [CrossRef]
    • Simonetti, E.; Szantoi, Z.; Lupi, A.; Eva, H.D. First Results From the Phenology-Based Synthesis Classifier Using Landsat 8 Imagery. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1496–1500. [CrossRef]
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 1496-1500
    • Simonetti, E.1    Szantoi, Z.2    Lupi, A.3    Eva, H.D.4
  • 37
    • 84988040365 scopus 로고    scopus 로고
    • Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat
    • [CrossRef]
    • Melaas, E.K.; Sulla-Menashe, D.; Gray, J.; Black, T.A.; Morin, T.H.; Richardson, A.D.; Friedl, M.A. Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sens. Environ. 2016, 186, 452–464. [CrossRef]
    • (2016) Remote Sens. Environ , vol.186 , pp. 452-464
    • Melaas, E.K.1    Sulla-Menashe, D.2    Gray, J.3    Black, T.A.4    Morin, T.H.5    Richardson, A.D.6    Friedl, M.A.7
  • 41
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • [CrossRef]
    • Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [CrossRef]
    • (2007) Int. J. Remote Sens , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 42
    • 85045994794 scopus 로고    scopus 로고
    • A Method for Robust Estimation of Vegetation Seasonality from Landsat and Sentinel-2 Time Series Data
    • [CrossRef]
    • Jönsson, P.; Cai, Z.; Melaas, E.; Friedl, M.A.; Eklundh, L. A Method for Robust Estimation of Vegetation Seasonality from Landsat and Sentinel-2 Time Series Data. Remote Sens. 2018, 10, 635. [CrossRef]
    • (2018) Remote Sens , vol.10 , pp. 635
    • Jönsson, P.1    Cai, Z.2    Melaas, E.3    Friedl, M.A.4    Eklundh, L.5
  • 43
    • 84941334770 scopus 로고    scopus 로고
    • Mapping Dominant Tree Species over Large Forested Areas Using Landsat Best-Available-Pixel Image Composites
    • [CrossRef]
    • Thompson, S.D.; Nelson, T.A.; White, J.C.; Wulder, M.A. Mapping Dominant Tree Species over Large Forested Areas Using Landsat Best-Available-Pixel Image Composites. Can. J. Remote Sens. 2015, 41, 203–218. [CrossRef]
    • (2015) Can. J. Remote Sens , vol.41 , pp. 203-218
    • Thompson, S.D.1    Nelson, T.A.2    White, J.C.3    Wulder, M.A.4
  • 44
    • 77956180602 scopus 로고    scopus 로고
    • A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America
    • [CrossRef]
    • Clark, M.L.; Aide, T.M.; Grau, H.R.; Riner, G. A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America. Remote Sens. Environ. 2010, 114, 2816–2832. [CrossRef]
    • (2010) Remote Sens. Environ , vol.114 , pp. 2816-2832
    • Clark, M.L.1    Aide, T.M.2    Grau, H.R.3    Riner, G.4
  • 45
    • 85090332384 scopus 로고    scopus 로고
    • Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation
    • [CrossRef]
    • Wakulińska, M.; Marcinkowska-Ochtyra, A. Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation. Remote Sens. 2020, 12, 2696. [CrossRef]
    • (2020) Remote Sens , vol.12 , pp. 2696
    • Wakulińska, M.1    Marcinkowska-Ochtyra, A.2
  • 47
    • 84950313430 scopus 로고    scopus 로고
    • Integrated Object-Based Spatiotemporal Characterization of Forest Change from an Annual Time Series of Landsat Image Composites
    • [CrossRef]
    • Gómez, C.; White, J.C.; Wulder, M.A.; Alejandro, P. Integrated Object-Based Spatiotemporal Characterization of Forest Change from an Annual Time Series of Landsat Image Composites. Can. J. Remote Sens. 2015, 41, 271–292. [CrossRef]
    • (2015) Can. J. Remote Sens , vol.41 , pp. 271-292
    • Gómez, C.1    White, J.C.2    Wulder, M.A.3    Alejandro, P.4
  • 48
    • 85098238169 scopus 로고    scopus 로고
    • Exploring the potential of land surface phenology and seasonal cloud free composites of one year of Sentinel-2 imagery for tree species mapping in a mountainous region
    • [CrossRef]
    • Kollert, A.; Bremer, M.; Löw, M.; Rutzinger, M. Exploring the potential of land surface phenology and seasonal cloud free composites of one year of Sentinel-2 imagery for tree species mapping in a mountainous region. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102208. [CrossRef]
    • (2021) Int. J. Appl. Earth Obs. Geoinf , vol.94 , pp. 102208
    • Kollert, A.1    Bremer, M.2    Löw, M.3    Rutzinger, M.4
  • 52
    • 85055450453 scopus 로고    scopus 로고
    • Google Earth Engine Applications Since Inception: Usage, Trends, and Potential
    • [CrossRef]
    • Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [CrossRef]
    • (2018) Remote Sens , vol.10 , pp. 1509
    • Kumar, L.1    Mutanga, O.2
  • 53
    • 85077862543 scopus 로고    scopus 로고
    • Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa
    • (Leon) [CrossRef]
    • Mondal, P.; Liu, X. (Leon); Fatoyinbo, T.; Lagomasino, D. Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa. Remote Sens. 2019, 11, 2928. [CrossRef]
    • (2019) Remote Sens , vol.11 , pp. 2928
    • Mondal, P.1    Liu, X.2    Fatoyinbo, T.3    Lagomasino, D.4
  • 54
    • 85026835094 scopus 로고    scopus 로고
    • A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform
    • [CrossRef]
    • Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [CrossRef]
    • (2017) ISPRS J. Photogramm. Remote Sens , vol.131 , pp. 104-120
    • Chen, B.1    Xiao, X.2    Li, X.3    Pan, L.4    Doughty, R.5    Ma, J.6    Dong, J.7    Qin, Y.8    Zhao, B.9    Wu, Z.10
  • 55
    • 85088636923 scopus 로고    scopus 로고
    • Mapping of Eucalyptus in Natura 2000 Areas Using Sentinel 2 Imagery and Artificial Neural Networks
    • [CrossRef]
    • FForstmaier, A.; Shekhar, A.; Chen, J. Mapping of Eucalyptus in Natura 2000 Areas Using Sentinel 2 Imagery and Artificial Neural Networks. Remote Sens. 2020, 12, 2176. [CrossRef]
    • (2020) Remote Sens , vol.12 , pp. 2176
    • FForstmaier, A.1    Shekhar, A.2    Chen, J.3
  • 57
    • 85096173988 scopus 로고    scopus 로고
    • Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms
    • [CrossRef]
    • Tassi, A.; Vizzari, M. Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms. Remote Sens. 2020, 12, 3776. [CrossRef]
    • (2020) Remote Sens , vol.12 , pp. 3776
    • Tassi, A.1    Vizzari, M.2
  • 59
    • 85090981751 scopus 로고    scopus 로고
    • Mapping the forest disturbance regimes of Europe
    • [CrossRef]
    • Senf, C.; Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 2021, 4, 63–70. [CrossRef]
    • (2021) Nat. Sustain , vol.4 , pp. 63-70
    • Senf, C.1    Seidl, R.2
  • 60
    • 85071572817 scopus 로고    scopus 로고
    • Improvement of remote sensing-based assessment of defoliation of Pinus spp. caused by Thaumetopoea pityocampa Denis and Schiffermüller and related environmental drivers in Southeastern Spain
    • [CrossRef]
    • Pérez-Romero, J.; Navarro-Cerrillo, R.M.; Palacios-Rodriguez, G.; Acosta, C.; Mesas-Carrascosa, F.J. Improvement of remote sensing-based assessment of defoliation of Pinus spp. caused by Thaumetopoea pityocampa Denis and Schiffermüller and related environmental drivers in Southeastern Spain. Remote Sens. 2019, 11, 1736. [CrossRef]
    • (2019) Remote Sens , vol.11 , pp. 1736
    • Pérez-Romero, J.1    Navarro-Cerrillo, R.M.2    Palacios-Rodriguez, G.3    Acosta, C.4    Mesas-Carrascosa, F.J.5
  • 61
    • 85055443120 scopus 로고    scopus 로고
    • Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin
    • [CrossRef]
    • Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [CrossRef]
    • (2018) Remote Sens , vol.10 , pp. 1635
    • Wang, C.1    Jia, M.2    Chen, N.3    Wang, W.4
  • 63
    • 85057599699 scopus 로고    scopus 로고
    • A method for monthly mapping of wet and dry snow using Sentinel-1 and MODIS: Application to a Himalayan river basin
    • [CrossRef]
    • Snapir, B.; Momblanch, A.; Jain, S.; Waine, T.; Holman, I.P. A method for monthly mapping of wet and dry snow using Sentinel-1 and MODIS: Application to a Himalayan river basin. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 222–230. [CrossRef]
    • (2019) Int. J. Appl. Earth Obs. Geoinf , vol.74 , pp. 222-230
    • Snapir, B.1    Momblanch, A.2    Jain, S.3    Waine, T.4    Holman, I.P.5
  • 64
    • 85044378439 scopus 로고    scopus 로고
    • On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment
    • [CrossRef]
    • Hagenaars, G.; De Vries, S.; Luijendijk, A.P.; De Boer, W.P.; Reniers, A.J. On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment. Coast. Eng. 2018, 133, 113–125. [CrossRef]
    • (2018) Coast. Eng , vol.133 , pp. 113-125
    • Hagenaars, G.1    De Vries, S.2    Luijendijk, A.P.3    De Boer, W.P.4    Reniers, A.J.5
  • 65
    • 85042726402 scopus 로고    scopus 로고
    • High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform
    • [CrossRef]
    • Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [CrossRef]
    • (2018) Remote Sens. Environ , vol.209 , pp. 227-239
    • Liu, X.1    Hu, G.2    Chen, Y.3    Li, X.4    Xu, X.5    Li, S.6    Pei, F.7    Wang, S.8
  • 66
    • 85095428216 scopus 로고    scopus 로고
    • Mapping 10-m Resolution Rural Settlements Using Multi-Source Remote Sensing Datasets with the Google Earth Engine Platform
    • [CrossRef]
    • Ji, H.; Li, X.; Wei, X.; Liu, W.; Zhang, L.; Wang, L. Mapping 10-m Resolution Rural Settlements Using Multi-Source Remote Sensing Datasets with the Google Earth Engine Platform. Remote Sens. 2020, 12, 2832. [CrossRef]
    • (2020) Remote Sens , vol.12 , pp. 2832
    • Ji, H.1    Li, X.2    Wei, X.3    Liu, W.4    Zhang, L.5    Wang, L.6
  • 67
    • 85052513650 scopus 로고    scopus 로고
    • The effects of local and landscape habitat attributes on bird diversity in urban greenspaces
    • [CrossRef]
    • Callaghan, C.T.; Major, R.E.; Lyons, M.B.; Martin, J.M.; Kingsford, R.T. The effects of local and landscape habitat attributes on bird diversity in urban greenspaces. Ecosphere 2018, 9, e02347. [CrossRef]
    • (2018) Ecosphere , vol.9 , pp. e02347
    • Callaghan, C.T.1    Major, R.E.2    Lyons, M.B.3    Martin, J.M.4    Kingsford, R.T.5
  • 68
    • 78650330323 scopus 로고    scopus 로고
    • Trend detection of annual and seasonal rainfall in Calabria (Southern Italy)
    • [CrossRef]
    • Caloiero, T.; Coscarelli, R.; Ferrari, E.; Mancini, M. Trend detection of annual and seasonal rainfall in Calabria (Southern Italy). Int. J. Clim. 2010, 31, 44–56. [CrossRef]
    • (2010) Int. J. Clim , vol.31 , pp. 44-56
    • Caloiero, T.1    Coscarelli, R.2    Ferrari, E.3    Mancini, M.4
  • 70
    • 85103684938 scopus 로고    scopus 로고
    • Design and implementation of multispecies ecological networks at the regional scale: Analysis and multi-temporal assessment
    • under review
    • Modica, G.; Praticò, S.; Laudari, L.; Ledda, A.; Di Fazio, S.; De Montis, A. Design and implementation of multispecies ecological networks at the regional scale: Analysis and multi-temporal assessment. Remote Sens.. under review.
    • Remote Sens
    • Modica, G.1    Praticò, S.2    Laudari, L.3    Ledda, A.4    Di Fazio, S.5    De Montis, A.6
  • 72
    • 85067856545 scopus 로고    scopus 로고
    • Land use and land cover mapping in wetlands one step closer to the ground: Sentinel-2 versus landsat 8
    • [CrossRef] [PubMed]
    • Sánchez-Espinosa, A.; Schröder, C. Land use and land cover mapping in wetlands one step closer to the ground: Sentinel-2 versus landsat 8. J. Environ. Manag. 2019, 247, 484–498. [CrossRef] [PubMed]
    • (2019) J. Environ. Manag , vol.247 , pp. 484-498
    • Sánchez-Espinosa, A.1    Schröder, C.2
  • 73
    • 85077960910 scopus 로고    scopus 로고
    • Correlating Sentinel-2 MSI-derived vegetation indices with in-situ reflectance and tissue macronutrients in savannah grass
    • [CrossRef]
    • Munyati, C.; Balzter, H.; Economon, E. Correlating Sentinel-2 MSI-derived vegetation indices with in-situ reflectance and tissue macronutrients in savannah grass. Int. J. Remote Sens. 2020, 41, 3820–3844. [CrossRef]
    • (2020) Int. J. Remote Sens , vol.41 , pp. 3820-3844
    • Munyati, C.1    Balzter, H.2    Economon, E.3
  • 75
    • 85081084406 scopus 로고    scopus 로고
    • Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon)
    • [CrossRef]
    • Nguyen, M.D.; Baez-Villanueva, O.M.; Du Bui, D.; Nguyen, P.T.; Ribbe, L. Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon). Remote Sens. 2020, 12, 281. [CrossRef]
    • (2020) Remote Sens , vol.12 , pp. 281
    • Nguyen, M.D.1    Baez-Villanueva, O.M.2    Du Bui, D.3    Nguyen, P.T.4    Ribbe, L.5
  • 76
    • 85073107951 scopus 로고    scopus 로고
    • From woody cover to woody canopies: How Sentinel-1 and Sentinel-2 data advance the mapping of woody plants in savannas
    • [CrossRef]
    • Zhang, W.; Brandt, M.; Wang, Q.; Prishchepov, A.V.; Tucker, C.J.; Li, Y.; Lyu, H.; Fensholt, R. From woody cover to woody canopies: How Sentinel-1 and Sentinel-2 data advance the mapping of woody plants in savannas. Remote Sens. Environ. 2019, 234, 111465. [CrossRef]
    • (2019) Remote Sens. Environ , vol.234 , pp. 111465
    • Zhang, W.1    Brandt, M.2    Wang, Q.3    Prishchepov, A.V.4    Tucker, C.J.5    Li, Y.6    Lyu, H.7    Fensholt, R.8
  • 77
    • 84876309901 scopus 로고    scopus 로고
    • Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery
    • [CrossRef]
    • Dong, J.; Xiao, X.; Chen, B.; Torbick, N.; Jin, C.; Zhang, G.; Biradar, C. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens. Environ. 2013, 134, 392–402. [CrossRef]
    • (2013) Remote Sens. Environ , vol.134 , pp. 392-402
    • Dong, J.1    Xiao, X.2    Chen, B.3    Torbick, N.4    Jin, C.5    Zhang, G.6    Biradar, C.7
  • 78
    • 1942536045 scopus 로고    scopus 로고
    • Digital change detection methods in ecosystem monitoring: A review
    • [CrossRef]
    • Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [CrossRef]
    • (2004) Int. J. Remote Sens , vol.25 , pp. 1565-1596
    • Coppin, P.1    Jonckheere, I.2    Nackaerts, K.3    Muys, B.4    Lambin, E.5
  • 80
    • 0030453414 scopus 로고    scopus 로고
    • Use of a green channel in remote sensing of global vegetation from EOS-MODIS
    • [CrossRef]
    • Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [CrossRef]
    • (1996) Remote Sens. Environ , vol.58 , pp. 289-298
    • Gitelson, A.A.1    Kaufman, Y.J.2    Merzlyak, M.N.3
  • 81
    • 0036846393 scopus 로고    scopus 로고
    • Overview of the radiometric and biophysical performance of the MODIS vegetation indices
    • [CrossRef]
    • Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]
    • (2002) Remote Sens. Environ , vol.83 , pp. 195-213
    • Huete, A.1    Didan, K.2    Miura, T.3    Rodriguez, E.P.4    Gao, X.5    Ferreira, L.G.6
  • 82
    • 0019728490 scopus 로고
    • Temporal relationships between spectral response and agronomic variables of a corn canopy
    • [CrossRef]
    • Kimes, D.; Markham, B.; Tucker, C.; McMurtrey, J. Temporal relationships between spectral response and agronomic variables of a corn canopy. Remote Sens. Environ. 1981, 11, 401–411. [CrossRef]
    • (1981) Remote Sens. Environ , vol.11 , pp. 401-411
    • Kimes, D.1    Markham, B.2    Tucker, C.3    McMurtrey, J.4
  • 83
    • 0026279679 scopus 로고
    • Mapping burns and natural reforestation using thematic Mapper data
    • [CrossRef]
    • Garcia, M.J.L.; Caselles, V. Mapping burns and natural reforestation using thematic Mapper data. Geocarto Int. 1991, 6, 31–37. [CrossRef]
    • (1991) Geocarto Int , vol.6 , pp. 31-37
    • Garcia, M.J.L.1    Caselles, V.2
  • 84
    • 0023399442 scopus 로고
    • Measurement of leaf relative water content by infrared reflectance
    • [CrossRef]
    • Raymond Hunt, E.; Rock, B.N.; Nobel, P.S. Measurement of leaf relative water content by infrared reflectance. Remote Sens. Environ. 1987, 22, 429–435. [CrossRef]
    • (1987) Remote Sens. Environ , vol.22 , pp. 429-435
    • Raymond Hunt, E.1    Rock, B.N.2    Nobel, P.S.3
  • 85
    • 82055173070 scopus 로고    scopus 로고
    • On the terminology of the spectral vegetation index (NIR − SWIR)/(NIR + SWIR)
    • [CrossRef]
    • Ji, L.; Zhang, L.; Wylie, B.K.; Rover, J. On the terminology of the spectral vegetation index (NIR − SWIR)/(NIR + SWIR). Int. J. Remote Sens. 2011, 32, 6901–6909. [CrossRef]
    • (2011) Int. J. Remote Sens , vol.32 , pp. 6901-6909
    • Ji, L.1    Zhang, L.2    Wylie, B.K.3    Rover, J.4
  • 86
    • 85086436280 scopus 로고    scopus 로고
    • Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral imagery
    • [CrossRef]
    • Modica, G.; Messina, G.; De Luca, G.; Fiozzo, V.; Praticò, S. Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral imagery. Comput. Electron. Agric. 2020, 175, 105500. [CrossRef]
    • (2020) Comput. Electron. Agric , vol.175 , pp. 105500
    • Modica, G.1    Messina, G.2    De Luca, G.3    Fiozzo, V.4    Praticò, S.5
  • 87
    • 85077303511 scopus 로고    scopus 로고
    • A methodology based on GEOBIA and WorldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards
    • [CrossRef]
    • Solano, F.; Di Fazio, S.; Modica, G. A methodology based on GEOBIA and WorldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101912. [CrossRef]
    • (2019) Int. J. Appl. Earth Obs. Geoinf , vol.83 , pp. 101912
    • Solano, F.1    Di Fazio, S.2    Modica, G.3
  • 88
    • 85051949494 scopus 로고    scopus 로고
    • Object Based and Pixel Based Classification Using Rapideye Satellite Imager of ETI-OSA, Lagos, Nigeria
    • [CrossRef]
    • Makinde, E.O.; Salami, A.T.; Olaleye, J.B.; Okewusi, O.C. Object Based and Pixel Based Classification Using Rapideye Satellite Imager of ETI-OSA, Lagos, Nigeria. Geoinform. FCE CTU 2016, 15, 59–70. [CrossRef]
    • (2016) Geoinform. FCE CTU , vol.15 , pp. 59-70
    • Makinde, E.O.1    Salami, A.T.2    Olaleye, J.B.3    Okewusi, O.C.4
  • 90
    • 0034289470 scopus 로고    scopus 로고
    • A Comparison of Clustering Strategies for Unsupervised Classification
    • [CrossRef]
    • Cihlar, J.; Latifovic, R.; Beaubien, J. A Comparison of Clustering Strategies for Unsupervised Classification. Can. J. Remote Sens. 2000, 26, 446–454. [CrossRef]
    • (2000) Can. J. Remote Sens , vol.26 , pp. 446-454
    • Cihlar, J.1    Latifovic, R.2    Beaubien, J.3
  • 92
    • 0001138328 scopus 로고
    • A K-Means Clustering Algorithm
    • [CrossRef]
    • Hartigan, J.A.; Wong, M.A. A K-Means Clustering Algorithm. Appl. Stat. 1979, 28, 100. [CrossRef]
    • (1979) Appl. Stat , vol.28 , pp. 100
    • Hartigan, J.A.1    Wong, M.A.2
  • 94
    • 84984807288 scopus 로고    scopus 로고
    • Unsupervised classification of airborne laser scanning data to locate potential wildlife habitats for forest management planning
    • [CrossRef]
    • Vauhkonen, J.; Imponen, J. Unsupervised classification of airborne laser scanning data to locate potential wildlife habitats for forest management planning. Forests 2016, 89, 350–363. [CrossRef]
    • (2016) Forests , vol.89 , pp. 350-363
    • Vauhkonen, J.1    Imponen, J.2
  • 95
    • 84922357427 scopus 로고    scopus 로고
    • Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery
    • [CrossRef]
    • Ma, L.; Cheng, L.; Li, M.; Liu, Y.; Ma, X. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery. ISPRS J. Photogramm. Remote Sens. 2015, 102, 14–27. [CrossRef]
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.102 , pp. 14-27
    • Ma, L.1    Cheng, L.2    Li, M.3    Liu, Y.4    Ma, X.5
  • 97
    • 85092420606 scopus 로고    scopus 로고
    • Monitoring Forest Change in the Amazon Using Multi-Temporal Remote Sensing Data and Machine Learning Classification on Google Earth Engine
    • [CrossRef]
    • Brovelli, M.A.; Sun, Y.; Yordanov, V. Monitoring Forest Change in the Amazon Using Multi-Temporal Remote Sensing Data and Machine Learning Classification on Google Earth Engine. ISPRS Int. J. Geo-Inf. 2020, 9, 580. [CrossRef]
    • (2020) ISPRS Int. J. Geo-Inf , vol.9 , pp. 580
    • Brovelli, M.A.1    Sun, Y.2    Yordanov, V.3
  • 98
    • 85071386432 scopus 로고    scopus 로고
    • Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data
    • [CrossRef]
    • Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience Remote Sens. 2020, 57, 1–20. [CrossRef]
    • (2020) GIScience Remote Sens , vol.57 , pp. 1-20
    • Abdi, A.M.1
  • 99
    • 85048716904 scopus 로고    scopus 로고
    • Implementation of machine-learning classification in remote sensing: An applied review
    • [CrossRef]
    • Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef]
    • (2018) Int. J. Remote Sens , vol.39 , pp. 2784-2817
    • Maxwell, A.E.1    Warner, T.A.2    Fang, F.3
  • 100
    • 85071561906 scopus 로고    scopus 로고
    • Integration of Machine Learning and Open Access Geospatial Data for Land Cover Mapping
    • [CrossRef]
    • Mardani, M.; Korrani, H.M.; De Simone, L.; Varas, S.; Kita, N.; Saito, T. Integration of Machine Learning and Open Access Geospatial Data for Land Cover Mapping. Remote Sens. 2019, 11, 1907. [CrossRef]
    • (2019) Remote Sens , vol.11 , pp. 1907
    • Mardani, M.1    Korrani, H.M.2    De Simone, L.3    Varas, S.4    Kita, N.5    Saito, T.6
  • 101
    • 85100733035 scopus 로고    scopus 로고
    • Comparison and assessment of different object-based classifications using machine learning algorithms and UAVs multispectral imagery in the framework of precision agriculture
    • under review
    • Modica, G.; De Luca, G.; Messina, G.; Fiozzo, V.; Praticò, S. Comparison and assessment of different object-based classifications using machine learning algorithms and UAVs multispectral imagery in the framework of precision agriculture. Remote Sens.. under review.
    • Remote Sens
    • Modica, G.1    De Luca, G.2    Messina, G.3    Fiozzo, V.4    Praticò, S.5
  • 102
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • [CrossRef]
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 107
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • [CrossRef]
    • Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 108
    • 0003450542 scopus 로고    scopus 로고
    • New York John Wiley and Sons: New York, NY, USA
    • Vapnik, V. Statistical Learning Theory; New York John Wiley and Sons: New York, NY, USA, 1998.
    • (1998) Statistical Learning Theory
    • Vapnik, V.1
  • 109
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • [CrossRef]
    • Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [CrossRef]
    • (2002) Int. J. Remote Sens , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 110
    • 85089690556 scopus 로고    scopus 로고
    • Land Cover Classification using Google Earth Engine and Random Forest Classifier—The Role of Image Composition
    • [CrossRef]
    • Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [CrossRef]
    • (2020) Remote Sens , vol.12 , pp. 2411
    • Phan, T.N.1    Kuch, V.2    Lehnert, L.W.3
  • 112
    • 0022927133 scopus 로고
    • Remote Sensing Brief Accuracy Assessment: A User’s Perspective
    • Story, M.; Congalton, R.G. Remote Sensing Brief Accuracy Assessment: A User’s Perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399.
    • (1986) Photogramm. Eng. Remote Sens , vol.52 , pp. 397-399
    • Story, M.1    Congalton, R.G.2
  • 115
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measures for classification tasks
    • [CrossRef]
    • Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [CrossRef]
    • (2009) Inf. Process. Manag , vol.45 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2
  • 116
    • 85096212335 scopus 로고    scopus 로고
    • Gap-Free Monitoring of Annual Mangrove Forest Dynamics in Ca Mau Province, Vietnamese Mekong Delta, Using the Landsat-7-8 Archives and Post-Classification Temporal Optimization
    • [CrossRef]
    • Hauser, L.T.; An Binh, N.; Viet Hoa, P.; Hong Quan, N.; Timmermans, J. Gap-Free Monitoring of Annual Mangrove Forest Dynamics in Ca Mau Province, Vietnamese Mekong Delta, Using the Landsat-7-8 Archives and Post-Classification Temporal Optimization. Remote Sens. 2020, 12, 3729. [CrossRef]
    • (2020) Remote Sens , vol.12 , pp. 3729
    • Hauser, L.T.1    An Binh, N.2    Viet Hoa, P.3    Hong Quan, N.4    Timmermans, J.5
  • 117
    • 85038215275 scopus 로고    scopus 로고
    • Google earth engine, open-access satellite data, and machine learning in support of large-area probabilisticwetland mapping
    • [CrossRef]
    • Hird, J.N.; DeLancey, E.R.; McDermid, G.J.; Kariyeva, J. Google earth engine, open-access satellite data, and machine learning in support of large-area probabilisticwetland mapping. Remote Sens. 2017, 9, 1315. [CrossRef]
    • (2017) Remote Sens , vol.9 , pp. 1315
    • Hird, J.N.1    DeLancey, E.R.2    McDermid, G.J.3    Kariyeva, J.4
  • 119
    • 85103870442 scopus 로고    scopus 로고
    • Multi-temporal image analysis for LULC classification and change detection
    • [CrossRef]
    • Vivekananda, G.N.; Swathi, R.; Sujith, A. Multi-temporal image analysis for LULC classification and change detection. Eur. J. Remote Sens. 2020, 1, 1–11. [CrossRef]
    • (2020) Eur. J. Remote Sens , vol.1 , pp. 1-11
    • Vivekananda, G.N.1    Swathi, R.2    Sujith, A.3
  • 121
    • 84944066283 scopus 로고    scopus 로고
    • Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine
    • [CrossRef]
    • Johansen, K.; Phinn, S.; Taylor, M. Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2015, 1, 36–49. [CrossRef]
    • (2015) Remote Sens. Appl. Soc. Environ , vol.1 , pp. 36-49
    • Johansen, K.1    Phinn, S.2    Taylor, M.3
  • 122
    • 84904489366 scopus 로고    scopus 로고
    • Tree species mapping in tropical forests using multi-temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis
    • [CrossRef]
    • Somers, B.; Asner, G.P. Tree species mapping in tropical forests using multi-temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 57–66. [CrossRef]
    • (2014) Int. J. Appl. Earth Obs. Geoinf , vol.31 , pp. 57-66
    • Somers, B.1    Asner, G.P.2
  • 124
    • 84961834117 scopus 로고    scopus 로고
    • Random forest in remote sensing: A review of applications and future directions
    • [CrossRef]
    • Belgiu, M.; Drăgu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.114 , pp. 24-31
    • Belgiu, M.1    Drăgu, L.2
  • 125
    • 85019627032 scopus 로고    scopus 로고
    • Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery
    • [CrossRef]
    • Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Motagh, M. Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 13–31. [CrossRef]
    • (2017) ISPRS J. Photogramm. Remote Sens , vol.130 , pp. 13-31
    • Mahdianpari, M.1    Salehi, B.2    Mohammadimanesh, F.3    Motagh, M.4
  • 126
    • 79951950272 scopus 로고    scopus 로고
    • Support vector machines in remote sensing: A review
    • [CrossRef]
    • Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [CrossRef]
    • (2011) ISPRS J. Photogramm. Remote Sens , vol.66 , pp. 247-259
    • Mountrakis, G.1    Im, J.2    Ogole, C.3
  • 127
    • 85053630393 scopus 로고    scopus 로고
    • Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review
    • [CrossRef]
    • Holloway, J.; Mengersen, K. Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sens. 2018, 10, 1365. [CrossRef]
    • (2018) Remote Sens , vol.10 , pp. 1365
    • Holloway, J.1    Mengersen, K.2
  • 128
    • 85092926343 scopus 로고    scopus 로고
    • A Comparison of UAV and Satellites Multispectral Imagery in Monitoring Onion Crop. An Application in the ‘Cipolla Rossa di Tropea’ (Italy)
    • [CrossRef]
    • Messina, G.; Peña, J.M.; Vizzari, M.; Modica, G. A Comparison of UAV and Satellites Multispectral Imagery in Monitoring Onion Crop. An Application in the ‘Cipolla Rossa di Tropea’ (Italy). Remote Sens. 2020, 12, 3424. [CrossRef]
    • (2020) Remote Sens , vol.12 , pp. 3424
    • Messina, G.1    Peña, J.M.2    Vizzari, M.3    Modica, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.