메뉴 건너뛰기




Volumn 28, Issue 4, 2021, Pages 518-528

A Bayesian Regularized Approach to Exploratory Factor Analysis in One Step

Author keywords

bayesian regularization; bilevel selection; Factor analysis; factor extraction; spike and slab prior

Indexed keywords

MARKOV CHAINS; MULTIVARIANT ANALYSIS; PARAMETER ESTIMATION;

EID: 85099827698     PISSN: 10705511     EISSN: 15328007     Source Type: Journal    
DOI: 10.1080/10705511.2020.1854763     Document Type: Article
Times cited : (8)

References (43)
  • 1
    • 70449569093 scopus 로고    scopus 로고
    • Exploratory structural equation modeling
    • Asparouhov, T., & Muthén, B., (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397–438. https://doi.org/10.1080/10705510903008204
    • (2009) Structural Equation Modeling , vol.16 , pp. 397-438
    • Asparouhov, T.1    Muthén, B.2
  • 2
    • 85060294482 scopus 로고    scopus 로고
    • How to determine the number of factors to retain in exploratory factor analysis: A comparison of extraction methods under realistic conditions
    • Auerswald, M., & Moshagen, M., (2019). How to determine the number of factors to retain in exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psychological Methods, 24, 468–491. https://doi.org/10.1037/met0000200
    • (2019) Psychological Methods , vol.24 , pp. 468-491
    • Auerswald, M.1    Moshagen, M.2
  • 3
    • 27144491920 scopus 로고    scopus 로고
    • Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis
    • Bernaards, C. A., & Jennrich, R. I., (2005). Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis. Educational and Psychological Measurement, 65, 676–696. https://doi.org/10.1177/0013164404272507
    • (2005) Educational and Psychological Measurement , vol.65 , pp. 676-696
    • Bernaards, C.A.1    Jennrich, R.I.2
  • 5
    • 0035590060 scopus 로고    scopus 로고
    • An overview of analytic rotation in exploratory factor analysis
    • Browne, M. W., (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111–150. https://doi.org/10.1207/S15327906MBR3601_05
    • (2001) Multivariate Behavioral Research , vol.36 , pp. 111-150
    • Browne, M.W.1
  • 6
    • 12344299021 scopus 로고    scopus 로고
    • Empirical Bayes Gibbs sampling
    • Casella, G., (2001). Empirical Bayes Gibbs sampling. Biostatistics, 2, 485–500. https://doi.org/10.1093/biostatistics/2.4.485
    • (2001) Biostatistics , vol.2 , pp. 485-500
    • Casella, G.1
  • 7
    • 84937730674 scopus 로고
    • Explaining the Gibbs sampler
    • Casella, G., & George, E. I., (1992). Explaining the Gibbs sampler. The American Statistician, 46, 167–174. https://doi.org/10.1080/00031305.1992.10475878
    • (1992) The American Statistician , vol.46 , pp. 167-174
    • Casella, G.1    George, E.I.2
  • 9
    • 85010692873 scopus 로고    scopus 로고
    • Bayesian regularized multivariate generalized latent variable models
    • Feng, X.-N., Wu, H.-T., & Song, X.-Y., (2017). Bayesian regularized multivariate generalized latent variable models. Structural Equation Modeling, 24, 341–358. https://doi.org/10.1080/10705511.2016.1257353
    • (2017) Structural Equation Modeling , vol.24 , pp. 341-358
    • Feng, X.-N.1    Wu, H.-T.2    Song, X.-Y.3
  • 11
    • 0001582213 scopus 로고    scopus 로고
    • Inference and monitoring convergence
    • Gilks W.R., Richardson S., Spiegelharter D.J., (eds), Chapman & Hall,. (Eds
    • Gelman, A., (1996). Inference and monitoring convergence. In W. R., Gilks, S., Richardson, & D. J., Spiegelharter (Eds.), Markov chain Monte Carlo in practice (pp. 131–144). Chapman & Hall.
    • (1996) Markov chain Monte Carlo in practice , pp. 131-144
    • Gelman, A.1
  • 13
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Geman, S., & Geman, D., (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741. https://doi.org/10.1109/TPAMI.1984.4767596
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 15
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their application
    • Hastings, W. K., (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika, 57, 97–109. https://doi.org/10.1093/biomet/57.1.97
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 16
    • 84985905874 scopus 로고    scopus 로고
    • Putting a spotlight on daily humor behaviors: Dimensionality and relationships with personality, subjective well-being, and humor styles
    • Heintz, S., (2017). Putting a spotlight on daily humor behaviors: Dimensionality and relationships with personality, subjective well-being, and humor styles. Personality and Individual Differences, 104, 407–412. https://doi.org/10.1016/j.paid.2016.08.042
    • (2017) Personality and Individual Differences , vol.104 , pp. 407-412
    • Heintz, S.1
  • 17
    • 8644267207 scopus 로고
    • A rationale and test for the number of factors in factor analysis
    • Horn, J. L., (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179–185. https://doi.org/10.1007/BF02289447
    • (1965) Psychometrika , vol.30 , pp. 179-185
    • Horn, J.L.1
  • 18
    • 85042788037 scopus 로고    scopus 로고
    • A penalized likelihood method for multi-group structural equation modelling
    • Huang, P.-H., (2018). A penalized likelihood method for multi-group structural equation modelling. British Journal of Mathematical and Statistical Psychology, 71, 499–522. https://doi.org/10.1111/bmsp.12130
    • (2018) British Journal of Mathematical and Statistical Psychology , vol.71 , pp. 499-522
    • Huang, P.-H.1
  • 19
    • 85017508050 scopus 로고    scopus 로고
    • A penalized likelihood method for structural equation modeling
    • Huang, P.-H., Chen, H., & Weng, L.-J., (2017). A penalized likelihood method for structural equation modeling. Psychometrika, 82, 329–354. https://doi.org/10.1007/s11336-017-9566-9
    • (2017) Psychometrika , vol.82 , pp. 329-354
    • Huang, P.-H.1    Chen, H.2    Weng, L.-J.3
  • 20
    • 84963576551 scopus 로고    scopus 로고
    • Regularized structural equation modeling
    • Jacobucci, R., Grimm, K. J., & McArdle, J. J., (2016). Regularized structural equation modeling. Structural Equation Modeling, 23, 555–566. https://doi.org/10.1080/10705511.2016.1154793
    • (2016) Structural Equation Modeling , vol.23 , pp. 555-566
    • Jacobucci, R.1    Grimm, K.J.2    McArdle, J.J.3
  • 21
    • 54049088609 scopus 로고    scopus 로고
    • Parameter expansion for sampling a correlation matrix: An efficient GPX-RPMH algorithm
    • Liu, X., (2008). Parameter expansion for sampling a correlation matrix: An efficient GPX-RPMH algorithm. Journal of Statistical Computation and Simulation, 78, 1065–1076. https://doi.org/10.1080/00949650701519635
    • (2008) Journal of Statistical Computation and Simulation , vol.78 , pp. 1065-1076
    • Liu, X.1
  • 22
    • 33846159462 scopus 로고    scopus 로고
    • A new efficient algorithm for sampling a correlation matrix based on parameter expansion and re-parameterization
    • Liu, X., & Daniels, M. J., (2006). A new efficient algorithm for sampling a correlation matrix based on parameter expansion and re-parameterization. Journal of Computational and Graphical Statistics, 15, 897–914. https://doi.org/10.1198/106186006X160681
    • (2006) Journal of Computational and Graphical Statistics , vol.15 , pp. 897-914
    • Liu, X.1    Daniels, M.J.2
  • 23
    • 84975121663 scopus 로고    scopus 로고
    • Bayesian factor analysis as a variable-selection problem: Alternative priors and consequences
    • Lu, Z. H., Chow, S. M., & Loken, E., (2016). Bayesian factor analysis as a variable-selection problem: Alternative priors and consequences. Multivariate Behavioral Research, 51, 519–539. https://doi.org/10.1080/00273171.2016.1168279
    • (2016) Multivariate Behavioral Research , vol.51 , pp. 519-539
    • Lu, Z.H.1    Chow, S.M.2    Loken, E.3
  • 24
    • 0037293782 scopus 로고    scopus 로고
    • Individual differences in uses of humor and their relation to psychological well-being: Development of the humor styles questionnaire
    • Martin, R. A., Puhlik-Doris, P., Larsen, G., Gray, J., & Weir, K., (2003). Individual differences in uses of humor and their relation to psychological well-being: Development of the humor styles questionnaire. Journal of Research in Personality, 37, 48–75. https://doi.org/10.1016/S0092-6566(02)00534-2
    • (2003) Journal of Research in Personality , vol.37 , pp. 48-75
    • Martin, R.A.1    Puhlik-Doris, P.2    Larsen, G.3    Gray, J.4    Weir, K.5
  • 27
    • 84873047637 scopus 로고    scopus 로고
    • Bayesian structural equation modeling: A more flexible representation of substantive theory
    • Muthén, B. O., & Asparouhov, T., (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17, 313–335. https://doi.org/10.1037/a0026802
    • (2012) Psychological Methods , vol.17 , pp. 313-335
    • Muthén, B.O.1    Asparouhov, T.2
  • 28
    • 85071717650 scopus 로고    scopus 로고
    • Clustering multivariate data using factor analytic Bayesian mixtures with an unknown number of components
    • Papastamoulis, P., (2020). Clustering multivariate data using factor analytic Bayesian mixtures with an unknown number of components. Statistics and Computing, 30, 485–506. https://doi.org/10.1007/s11222-019-09891-z
    • (2020) Statistics and Computing , vol.30 , pp. 485-506
    • Papastamoulis, P.1
  • 31
    • 41149087694 scopus 로고    scopus 로고
    • CODA: Convergence diagnosis and output analysis for MCMC
    • Plummer, M., Best, N., Cowles, K., & Vines, K., (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News, 6, 7–11. https://cran.r-project.org/doc/Rnews/Rnews_2006-1.pdf#page=7
    • (2006) R News , vol.6 , pp. 7-11
    • Plummer, M.1    Best, N.2    Cowles, K.3    Vines, K.4
  • 34
    • 77951202741 scopus 로고    scopus 로고
    • A comparative investigation of rotation criteria within exploratory factor analysis
    • Sass, D. A., & Schmitt, T. A., (2010). A comparative investigation of rotation criteria within exploratory factor analysis. Multivariate Behavioral Research, 45, 73–103. https://doi.org/10.1080/00273170903504810
    • (2010) Multivariate Behavioral Research , vol.45 , pp. 73-103
    • Sass, D.A.1    Schmitt, T.A.2
  • 35
    • 85060622274 scopus 로고    scopus 로고
    • Should regularization replace simple structure rotation in exploratory factor analysis?
    • Scharf, F., & Nestler, S., (2019). Should regularization replace simple structure rotation in exploratory factor analysis? Structural Equation Modeling, 26, 576–590. https://doi.org/10.1080/10705511.2018.1558060
    • (2019) Structural Equation Modeling , vol.26 , pp. 576-590
    • Scharf, F.1    Nestler, S.2
  • 37
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R., (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B, 58, 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
    • (1996) Journal of the Royal Statistical Society Series B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 38
    • 85023753659 scopus 로고    scopus 로고
    • Sparse exploratory factor analysis
    • Trendafilov, N. T., Fontanella, S., & Adachi, K., (2017). Sparse exploratory factor analysis. Psychometrika, 82, 778–794. https://doi.org/10.1007/s11336-017-9575-8
    • (2017) Psychometrika , vol.82 , pp. 778-794
    • Trendafilov, N.T.1    Fontanella, S.2    Adachi, K.3
  • 39
    • 85035040110 scopus 로고    scopus 로고
    • Prior sensitivity analysis in default Bayesian structural equation modeling
    • Van Erp, S., Mulder, J., & Oberski, D. L., (2017). Prior sensitivity analysis in default Bayesian structural equation modeling. Psychological Methods, 23, 363–388. https://doi.org/10.1037/met0000162
    • (2017) Psychological Methods , vol.23 , pp. 363-388
    • Van Erp, S.1    Mulder, J.2    Oberski, D.L.3
  • 40
    • 84979927039 scopus 로고    scopus 로고
    • Bayesian variable selection and estimation for group Lasso
    • Xu, X., & Ghosh, M., (2015). Bayesian variable selection and estimation for group Lasso. Bayesian Analysis, 10, 909–936. https://doi.org/10.1214/14-BA929
    • (2015) Bayesian Analysis , vol.10 , pp. 909-936
    • Xu, X.1    Ghosh, M.2
  • 42
    • 29144459062 scopus 로고    scopus 로고
    • Efficient empirical Bayes variable selection and estimation in linear models
    • Yuan, M., & Lin, Y., (2005). Efficient empirical Bayes variable selection and estimation in linear models. Journal of the American Statistical Association, 100, 1215–1225. https://doi.org/10.1198/016214505000000367
    • (2005) Journal of the American Statistical Association , vol.100 , pp. 1215-1225
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.