-
1
-
-
70449569093
-
Exploratory structural equation modeling
-
Asparouhov, T., & Muthén, B., (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397–438. https://doi.org/10.1080/10705510903008204
-
(2009)
Structural Equation Modeling
, vol.16
, pp. 397-438
-
-
Asparouhov, T.1
Muthén, B.2
-
2
-
-
85060294482
-
How to determine the number of factors to retain in exploratory factor analysis: A comparison of extraction methods under realistic conditions
-
Auerswald, M., & Moshagen, M., (2019). How to determine the number of factors to retain in exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psychological Methods, 24, 468–491. https://doi.org/10.1037/met0000200
-
(2019)
Psychological Methods
, vol.24
, pp. 468-491
-
-
Auerswald, M.1
Moshagen, M.2
-
3
-
-
27144491920
-
Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis
-
Bernaards, C. A., & Jennrich, R. I., (2005). Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis. Educational and Psychological Measurement, 65, 676–696. https://doi.org/10.1177/0013164404272507
-
(2005)
Educational and Psychological Measurement
, vol.65
, pp. 676-696
-
-
Bernaards, C.A.1
Jennrich, R.I.2
-
5
-
-
0035590060
-
An overview of analytic rotation in exploratory factor analysis
-
Browne, M. W., (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111–150. https://doi.org/10.1207/S15327906MBR3601_05
-
(2001)
Multivariate Behavioral Research
, vol.36
, pp. 111-150
-
-
Browne, M.W.1
-
6
-
-
12344299021
-
Empirical Bayes Gibbs sampling
-
Casella, G., (2001). Empirical Bayes Gibbs sampling. Biostatistics, 2, 485–500. https://doi.org/10.1093/biostatistics/2.4.485
-
(2001)
Biostatistics
, vol.2
, pp. 485-500
-
-
Casella, G.1
-
7
-
-
84937730674
-
Explaining the Gibbs sampler
-
Casella, G., & George, E. I., (1992). Explaining the Gibbs sampler. The American Statistician, 46, 167–174. https://doi.org/10.1080/00031305.1992.10475878
-
(1992)
The American Statistician
, vol.46
, pp. 167-174
-
-
Casella, G.1
George, E.I.2
-
8
-
-
84908248026
-
Bayesian exploratory factor analysis
-
Conti, G., Frühwirth-Schnatter, S., Heckman, J. J., & Piatek, R., (2014). Bayesian exploratory factor analysis. Journal of Econometrics, 183, 31–57. https://doi.org/10.1016/j.jeconom.2014.06.008
-
(2014)
Journal of Econometrics
, vol.183
, pp. 31-57
-
-
Conti, G.1
Frühwirth-Schnatter, S.2
Heckman, J.J.3
Piatek, R.4
-
9
-
-
85010692873
-
Bayesian regularized multivariate generalized latent variable models
-
Feng, X.-N., Wu, H.-T., & Song, X.-Y., (2017). Bayesian regularized multivariate generalized latent variable models. Structural Equation Modeling, 24, 341–358. https://doi.org/10.1080/10705511.2016.1257353
-
(2017)
Structural Equation Modeling
, vol.24
, pp. 341-358
-
-
Feng, X.-N.1
Wu, H.-T.2
Song, X.-Y.3
-
11
-
-
0001582213
-
Inference and monitoring convergence
-
Gilks W.R., Richardson S., Spiegelharter D.J., (eds), Chapman & Hall,. (Eds
-
Gelman, A., (1996). Inference and monitoring convergence. In W. R., Gilks, S., Richardson, & D. J., Spiegelharter (Eds.), Markov chain Monte Carlo in practice (pp. 131–144). Chapman & Hall.
-
(1996)
Markov chain Monte Carlo in practice
, pp. 131-144
-
-
Gelman, A.1
-
12
-
-
0004012196
-
-
2nd, Chapman & Hall, &, ed
-
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B., (2004). Bayesian data analysis (2nd ed.). Chapman & Hall.
-
(2004)
Bayesian data analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
13
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
-
Geman, S., & Geman, D., (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741. https://doi.org/10.1109/TPAMI.1984.4767596
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
14
-
-
0003860037
-
-
Chapman & Hall, &, (Eds
-
Gilks, W. R., Richardson, S., & Spiegelhalter, D. J., (Eds). (1996). Markov chain Monte Carlo in practice. Chapman & Hall.
-
(1996)
Markov chain Monte Carlo in practice
-
-
Gilks, W.R.1
Richardson, S.2
Spiegelhalter, D.J.3
-
15
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their application
-
Hastings, W. K., (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika, 57, 97–109. https://doi.org/10.1093/biomet/57.1.97
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
16
-
-
84985905874
-
Putting a spotlight on daily humor behaviors: Dimensionality and relationships with personality, subjective well-being, and humor styles
-
Heintz, S., (2017). Putting a spotlight on daily humor behaviors: Dimensionality and relationships with personality, subjective well-being, and humor styles. Personality and Individual Differences, 104, 407–412. https://doi.org/10.1016/j.paid.2016.08.042
-
(2017)
Personality and Individual Differences
, vol.104
, pp. 407-412
-
-
Heintz, S.1
-
17
-
-
8644267207
-
A rationale and test for the number of factors in factor analysis
-
Horn, J. L., (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179–185. https://doi.org/10.1007/BF02289447
-
(1965)
Psychometrika
, vol.30
, pp. 179-185
-
-
Horn, J.L.1
-
18
-
-
85042788037
-
A penalized likelihood method for multi-group structural equation modelling
-
Huang, P.-H., (2018). A penalized likelihood method for multi-group structural equation modelling. British Journal of Mathematical and Statistical Psychology, 71, 499–522. https://doi.org/10.1111/bmsp.12130
-
(2018)
British Journal of Mathematical and Statistical Psychology
, vol.71
, pp. 499-522
-
-
Huang, P.-H.1
-
19
-
-
85017508050
-
A penalized likelihood method for structural equation modeling
-
Huang, P.-H., Chen, H., & Weng, L.-J., (2017). A penalized likelihood method for structural equation modeling. Psychometrika, 82, 329–354. https://doi.org/10.1007/s11336-017-9566-9
-
(2017)
Psychometrika
, vol.82
, pp. 329-354
-
-
Huang, P.-H.1
Chen, H.2
Weng, L.-J.3
-
20
-
-
84963576551
-
Regularized structural equation modeling
-
Jacobucci, R., Grimm, K. J., & McArdle, J. J., (2016). Regularized structural equation modeling. Structural Equation Modeling, 23, 555–566. https://doi.org/10.1080/10705511.2016.1154793
-
(2016)
Structural Equation Modeling
, vol.23
, pp. 555-566
-
-
Jacobucci, R.1
Grimm, K.J.2
McArdle, J.J.3
-
21
-
-
54049088609
-
Parameter expansion for sampling a correlation matrix: An efficient GPX-RPMH algorithm
-
Liu, X., (2008). Parameter expansion for sampling a correlation matrix: An efficient GPX-RPMH algorithm. Journal of Statistical Computation and Simulation, 78, 1065–1076. https://doi.org/10.1080/00949650701519635
-
(2008)
Journal of Statistical Computation and Simulation
, vol.78
, pp. 1065-1076
-
-
Liu, X.1
-
22
-
-
33846159462
-
A new efficient algorithm for sampling a correlation matrix based on parameter expansion and re-parameterization
-
Liu, X., & Daniels, M. J., (2006). A new efficient algorithm for sampling a correlation matrix based on parameter expansion and re-parameterization. Journal of Computational and Graphical Statistics, 15, 897–914. https://doi.org/10.1198/106186006X160681
-
(2006)
Journal of Computational and Graphical Statistics
, vol.15
, pp. 897-914
-
-
Liu, X.1
Daniels, M.J.2
-
23
-
-
84975121663
-
Bayesian factor analysis as a variable-selection problem: Alternative priors and consequences
-
Lu, Z. H., Chow, S. M., & Loken, E., (2016). Bayesian factor analysis as a variable-selection problem: Alternative priors and consequences. Multivariate Behavioral Research, 51, 519–539. https://doi.org/10.1080/00273171.2016.1168279
-
(2016)
Multivariate Behavioral Research
, vol.51
, pp. 519-539
-
-
Lu, Z.H.1
Chow, S.M.2
Loken, E.3
-
24
-
-
0037293782
-
Individual differences in uses of humor and their relation to psychological well-being: Development of the humor styles questionnaire
-
Martin, R. A., Puhlik-Doris, P., Larsen, G., Gray, J., & Weir, K., (2003). Individual differences in uses of humor and their relation to psychological well-being: Development of the humor styles questionnaire. Journal of Research in Personality, 37, 48–75. https://doi.org/10.1016/S0092-6566(02)00534-2
-
(2003)
Journal of Research in Personality
, vol.37
, pp. 48-75
-
-
Martin, R.A.1
Puhlik-Doris, P.2
Larsen, G.3
Gray, J.4
Weir, K.5
-
25
-
-
5744249209
-
Equations of state calculations by fast computing machine
-
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E., (1953). Equations of state calculations by fast computing machine. Journal of Chemical Physics, 21, 1087–1091. https://doi.org/10.1063/1.1699114
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1091
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
27
-
-
84873047637
-
Bayesian structural equation modeling: A more flexible representation of substantive theory
-
Muthén, B. O., & Asparouhov, T., (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17, 313–335. https://doi.org/10.1037/a0026802
-
(2012)
Psychological Methods
, vol.17
, pp. 313-335
-
-
Muthén, B.O.1
Asparouhov, T.2
-
28
-
-
85071717650
-
Clustering multivariate data using factor analytic Bayesian mixtures with an unknown number of components
-
Papastamoulis, P., (2020). Clustering multivariate data using factor analytic Bayesian mixtures with an unknown number of components. Statistics and Computing, 30, 485–506. https://doi.org/10.1007/s11222-019-09891-z
-
(2020)
Statistics and Computing
, vol.30
, pp. 485-506
-
-
Papastamoulis, P.1
-
29
-
-
49549105778
-
The Bayesian lasso
-
Park, T., & Casella, G., (2008). The Bayesian lasso. Journal of the American Statistical Association, 103, 681–686. https://doi.org/10.1198/016214508000000337
-
(2008)
Journal of the American Statistical Association
, vol.103
, pp. 681-686
-
-
Park, T.1
Casella, G.2
-
31
-
-
41149087694
-
CODA: Convergence diagnosis and output analysis for MCMC
-
Plummer, M., Best, N., Cowles, K., & Vines, K., (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News, 6, 7–11. https://cran.r-project.org/doc/Rnews/Rnews_2006-1.pdf#page=7
-
(2006)
R News
, vol.6
, pp. 7-11
-
-
Plummer, M.1
Best, N.2
Cowles, K.3
Vines, K.4
-
34
-
-
77951202741
-
A comparative investigation of rotation criteria within exploratory factor analysis
-
Sass, D. A., & Schmitt, T. A., (2010). A comparative investigation of rotation criteria within exploratory factor analysis. Multivariate Behavioral Research, 45, 73–103. https://doi.org/10.1080/00273170903504810
-
(2010)
Multivariate Behavioral Research
, vol.45
, pp. 73-103
-
-
Sass, D.A.1
Schmitt, T.A.2
-
35
-
-
85060622274
-
Should regularization replace simple structure rotation in exploratory factor analysis?
-
Scharf, F., & Nestler, S., (2019). Should regularization replace simple structure rotation in exploratory factor analysis? Structural Equation Modeling, 26, 576–590. https://doi.org/10.1080/10705511.2018.1558060
-
(2019)
Structural Equation Modeling
, vol.26
, pp. 576-590
-
-
Scharf, F.1
Nestler, S.2
-
36
-
-
84882287077
-
A sparse-group Lasso
-
Simon, N., Friedman, J., Hastie, T., & Tibshirani, R., (2013). A sparse-group Lasso. Journal of Computational and Graphical Statistics, 22, 231–245. https://doi.org/10.1080/10618600.2012.681250
-
(2013)
Journal of Computational and Graphical Statistics
, vol.22
, pp. 231-245
-
-
Simon, N.1
Friedman, J.2
Hastie, T.3
Tibshirani, R.4
-
37
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R., (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B, 58, 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
-
(1996)
Journal of the Royal Statistical Society Series B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
38
-
-
85023753659
-
Sparse exploratory factor analysis
-
Trendafilov, N. T., Fontanella, S., & Adachi, K., (2017). Sparse exploratory factor analysis. Psychometrika, 82, 778–794. https://doi.org/10.1007/s11336-017-9575-8
-
(2017)
Psychometrika
, vol.82
, pp. 778-794
-
-
Trendafilov, N.T.1
Fontanella, S.2
Adachi, K.3
-
39
-
-
85035040110
-
Prior sensitivity analysis in default Bayesian structural equation modeling
-
Van Erp, S., Mulder, J., & Oberski, D. L., (2017). Prior sensitivity analysis in default Bayesian structural equation modeling. Psychological Methods, 23, 363–388. https://doi.org/10.1037/met0000162
-
(2017)
Psychological Methods
, vol.23
, pp. 363-388
-
-
Van Erp, S.1
Mulder, J.2
Oberski, D.L.3
-
40
-
-
84979927039
-
Bayesian variable selection and estimation for group Lasso
-
Xu, X., & Ghosh, M., (2015). Bayesian variable selection and estimation for group Lasso. Bayesian Analysis, 10, 909–936. https://doi.org/10.1214/14-BA929
-
(2015)
Bayesian Analysis
, vol.10
, pp. 909-936
-
-
Xu, X.1
Ghosh, M.2
-
42
-
-
29144459062
-
Efficient empirical Bayes variable selection and estimation in linear models
-
Yuan, M., & Lin, Y., (2005). Efficient empirical Bayes variable selection and estimation in linear models. Journal of the American Statistical Association, 100, 1215–1225. https://doi.org/10.1198/016214505000000367
-
(2005)
Journal of the American Statistical Association
, vol.100
, pp. 1215-1225
-
-
Yuan, M.1
Lin, Y.2
-
43
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan, M., & Lin, Y., (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68, 49–67. https://doi.org/10.1111/j.1467-9868.2005.00532.x
-
(2006)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
|