메뉴 건너뛰기




Volumn 71, Issue 3, 2018, Pages 499-522

A penalized likelihood method for multi-group structural equation modelling

Author keywords

factor analysis; measurement invariance; penalized likelihood; structural equation modelling

Indexed keywords

ALGORITHM; COMPUTER SIMULATION; HUMAN; LATENT CLASS ANALYSIS; PROCEDURES; PSYCHOMETRY; REGRESSION ANALYSIS; STATISTICAL MODEL;

EID: 85042788037     PISSN: 00071102     EISSN: 20448317     Source Type: Journal    
DOI: 10.1111/bmsp.12130     Document Type: Article
Times cited : (40)

References (55)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactionson Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
    • (1974) IEEE Transactionson Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 4
    • 34147168651 scopus 로고
    • Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance
    • Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 105(3), 456–466. https://doi.org/10.1037/0033-2909.105.3.456
    • (1989) Psychological Bulletin , vol.105 , Issue.3 , pp. 456-466
    • Byrne, B.M.1    Shavelson, R.J.2    Muthén, B.3
  • 5
    • 33947153898 scopus 로고    scopus 로고
    • Estimation of a covariance matrix with zeros
    • Chaudhuri, S., Drton, M., & Richardson, T. S. (2007). Estimation of a covariance matrix with zeros. Biometrika, 94(1), 199–216. https://doi.org/10.1093/biomet/asm007
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 199-216
    • Chaudhuri, S.1    Drton, M.2    Richardson, T.S.3
  • 6
    • 84936769589 scopus 로고    scopus 로고
    • Statistical analysis of Q-matrix based diagnostic classification models
    • Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110(510), 850–866. https://doi.org/10.1080/01621459.2014.934827
    • (2015) Journal of the American Statistical Association , vol.110 , Issue.510 , pp. 850-866
    • Chen, Y.1    Liu, J.2    Xu, G.3    Ying, Z.4
  • 8
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348–1360. https://doi.org/10.1198/016214501753382273
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 9
    • 77949352853 scopus 로고    scopus 로고
    • A selective overview of variable selection in high dimensional feature space (invited review article)
    • Fan, J., & Lv, J. (2010). A selective overview of variable selection in high dimensional feature space (invited review article). Statistica Sinica, 20(1), 101–148. https://doi.org/10.1007/s11425-015-5062-9
    • (2010) Statistica Sinica , vol.20 , Issue.1 , pp. 101-148
    • Fan, J.1    Lv, J.2
  • 10
    • 33746424361 scopus 로고    scopus 로고
    • Confirmatory factor analytic procedures for the determination of measurement invariance
    • French, B. F., & Finch, W. H. (2006). Confirmatory factor analytic procedures for the determination of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 13(3), 378–402. https://doi.org/10.1207/s15328007sem1303_3
    • (2006) Structural Equation Modeling: A Multidisciplinary Journal , vol.13 , Issue.3 , pp. 378-402
    • French, B.F.1    Finch, W.H.2
  • 11
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22. https://doi.org/10.18637/jss.v033.i01
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 14
    • 84902142486 scopus 로고    scopus 로고
    • Estimation of an oblique structure via penalized likelihood factor analysis
    • Hirose, K., & Yamamoto, M. (2014). Estimation of an oblique structure via penalized likelihood factor analysis. Computational Statistics and Data Analysis, 79, 120–132. https://doi.org/10.1016/j.csda.2014.05.011
    • (2014) Computational Statistics and Data Analysis , vol.79 , pp. 120-132
    • Hirose, K.1    Yamamoto, M.2
  • 15
    • 84938416978 scopus 로고    scopus 로고
    • Sparse estimation via nonconcave penalized likelihood in factor analysis model
    • Hirose, K., & Yamamoto, M. (2015). Sparse estimation via nonconcave penalized likelihood in factor analysis model. Statistics and Computing, 25(5), 863–875. https://doi.org/10.1007/s11222-014-9458-0
    • (2015) Statistics and Computing , vol.25 , Issue.5 , pp. 863-875
    • Hirose, K.1    Yamamoto, M.2
  • 17
    • 85018292698 scopus 로고    scopus 로고
    • Asymptotics of AIC, BIC, and RMSEA for model selection in structural equation modeling
    • Huang, P.-H. (2017). Asymptotics of AIC, BIC, and RMSEA for model selection in structural equation modeling. Psychometrika, 82(2), 407–426. https://doi.org/10.1007/s11336-017-9572-y
    • (2017) Psychometrika , vol.82 , Issue.2 , pp. 407-426
    • Huang, P.-H.1
  • 18
    • 85017508050 scopus 로고    scopus 로고
    • A penalized likelihood method for structural equation modeling
    • Huang, P.-H., Chen, H., & Weng, L.-J. (2017). A penalized likelihood method for structural equation modeling. Psychometrika, 82(2), 329–354. https://doi.org/10.1007/s11336-017-9566-9
    • (2017) Psychometrika , vol.82 , Issue.2 , pp. 329-354
    • Huang, P.-H.1    Chen, H.2    Weng, L.-J.3
  • 20
    • 33744994325 scopus 로고    scopus 로고
    • Rotation to simple loadings using component loss functions: The oblique case
    • Johnson, E. C., Meade, A. W., %26 DuVernet, A. M. (2009). The role of referent indicators in tests of measurement invariance. Structural Equation Modeling A Multidisciplinary Journal, 16 (4), 642-657
    • Jennrich, R. I. (2006). Rotation to simple loadings using component loss functions: The oblique case. Psychometrika, 71(1), 173–191. https://doi.org/10.1007/s11336-003-1136-B Johnson, E. C., Meade, A. W., %26 DuVernet, A. M. (2009). The role of referent indicators in tests of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 16 (4), 642-657.https://doi.org/10.1080/10705510903206014
    • (2006) Psychometrika , vol.71 , Issue.1 , pp. 173-191
    • Jennrich, R.I.1
  • 22
    • 0000804180 scopus 로고
    • Simultaneous factor analysis in several populations
    • Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36(4), 409–426. https://doi.org/10.1007/BF02291366
    • (1971) Psychometrika , vol.36 , Issue.4 , pp. 409-426
    • Jöreskog, K.G.1
  • 23
    • 84961214320 scopus 로고    scopus 로고
    • Comparisons of three empirical methods for partial factorial invariance: Forward, backward, and factor-ratio tests
    • Jung, E., & Yoon, M. (2016). Comparisons of three empirical methods for partial factorial invariance: Forward, backward, and factor-ratio tests. Structural Equation Modeling: A Multidisciplinary Journal, 23(4), 567–584. https://doi.org/10.1080/10705511.2015.1138092
    • (2016) Structural Equation Modeling: A Multidisciplinary Journal , vol.23 , Issue.4 , pp. 567-584
    • Jung, E.1    Yoon, M.2
  • 24
    • 84999670129 scopus 로고    scopus 로고
    • Two-step approach to partial factorial invariance: Selecting a reference variable and identifying the source of noninvariance
    • Jung, E., & Yoon, M. (2017). Two-step approach to partial factorial invariance: Selecting a reference variable and identifying the source of noninvariance. Structural Equation Modeling: A Multidisciplinary Journal, 24(1), 65–79. https://doi.org/10.1080/10705511.2016.1251845
    • (2017) Structural Equation Modeling: A Multidisciplinary Journal , vol.24 , Issue.1 , pp. 65-79
    • Jung, E.1    Yoon, M.2
  • 25
    • 84973702844 scopus 로고
    • Power of the likelihood ratio test in multiple group confirmatory factor analysis under partial measurement invariance
    • Kaplan, D. (1989). Power of the likelihood ratio test in multiple group confirmatory factor analysis under partial measurement invariance. Educational and Psychological Measurement, 49(3), 579–586. https://doi.org/10.1177/001316448904900308
    • (1989) Educational and Psychological Measurement , vol.49 , Issue.3 , pp. 579-586
    • Kaplan, D.1
  • 27
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • Knight, K., & Fu, W. (2000). Asymptotics for lasso-type estimators. Annals of Statistics, 28(5), 1356–1378. https://doi.org/10.1017/CBO9781107415324.004
    • (2000) Annals of Statistics , vol.28 , Issue.5 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 28
    • 84963614704 scopus 로고    scopus 로고
    • Exact post-selection inference, with application to the lasso
    • Lee, J. D., Sun, D. L., Sun, Y., & Taylor, J. E. (2016). Exact post-selection inference, with application to the lasso. Annals of Statistics, 44(3), 907–927. https://doi.org/10.1214/15-AOS1371
    • (2016) Annals of Statistics , vol.44 , Issue.3 , pp. 907-927
    • Lee, J.D.1    Sun, D.L.2    Sun, Y.3    Taylor, J.E.4
  • 29
    • 33847415033 scopus 로고    scopus 로고
    • Can one estimate the conditional distribution of post-model-selection estimators?
    • Leeb, H., & Pötscher, B. M. (2006). Can one estimate the conditional distribution of post-model-selection estimators? Annals of Statistics, 34(5), 2554–2591. https://doi.org/10.1214/009053606000000821
    • (2006) Annals of Statistics , vol.34 , Issue.5 , pp. 2554-2591
    • Leeb, H.1    Pötscher, B.M.2
  • 30
    • 84927550875 scopus 로고    scopus 로고
    • Detection of differential item functioning using the lasso approach
    • Magis, D., Tuerlinckx, F., & De Boeck, P. (2015). Detection of differential item functioning using the lasso approach. Journal of Educational and Behavioral Statistics, 40(2), 111–135. https://doi.org/10.3102/1076998614559747
    • (2015) Journal of Educational and Behavioral Statistics , vol.40 , Issue.2 , pp. 111-135
    • Magis, D.1    Tuerlinckx, F.2    De Boeck, P.3
  • 31
    • 85004805728 scopus 로고
    • Some algebraic properties of the reticular action model for moment structures
    • McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the reticular action model for moment structures. British Journal of Mathematical and Statistical Psychology, 37(2), 234–251. https://doi.org/10.1111/j.2044-8317.1984.tb00802.x
    • (1984) British Journal of Mathematical and Statistical Psychology , vol.37 , Issue.2 , pp. 234-251
    • McArdle, J.J.1    McDonald, R.P.2
  • 32
    • 38049129064 scopus 로고    scopus 로고
    • Power and precision in confirmatory factor analytic tests of measurement invariance
    • Meade, A. W., & Bauer, D. J. (2007). Power and precision in confirmatory factor analytic tests of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(4), 611–635. https://doi.org/10.1080/10705510701575461
    • (2007) Structural Equation Modeling: A Multidisciplinary Journal , vol.14 , Issue.4 , pp. 611-635
    • Meade, A.W.1    Bauer, D.J.2
  • 33
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • Meng, X.-L., & Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80(2), 267–278. https://doi.org/10.1093/biomet/80.2.267
    • (1993) Biometrika , vol.80 , Issue.2 , pp. 267-278
    • Meng, X.-L.1    Rubin, D.B.2
  • 34
    • 34147110831 scopus 로고
    • Measurement invariance, factor analysis and factorial invariance
    • Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58(4), 525–543. https://doi.org/10.1007/Bf02294825
    • (1993) Psychometrika , vol.58 , Issue.4 , pp. 525-543
    • Meredith, W.1
  • 36
    • 1942507439 scopus 로고    scopus 로고
    • Evaluating the impact of partial factorial invariance on selection in two populations
    • Millsap, R. E., & Kwok, O.-M. (2004). Evaluating the impact of partial factorial invariance on selection in two populations. Psychological Methods, 9(1), 93–115. https://doi.org/10.1037/1082-989X.9.1.93
    • (2004) Psychological Methods , vol.9 , Issue.1 , pp. 93-115
    • Millsap, R.E.1    Kwok, O.-M.2
  • 37
    • 0001391849 scopus 로고
    • A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators
    • Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49(1), 115–132. https://doi.org/10.1007/BF02294210
    • (1984) Psychometrika , vol.49 , Issue.1 , pp. 115-132
    • Muthén, B.1
  • 38
    • 84873047637 scopus 로고    scopus 로고
    • Bayesian structural equation modeling: A more flexible representation of substantive theory
    • Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313–335. https://doi.org/10.1037/a0026802
    • (2012) Psychological Methods , vol.17 , Issue.3 , pp. 313-335
    • Muthén, B.1    Asparouhov, T.2
  • 39
    • 84971851120 scopus 로고
    • Effects of model selection on inference
    • Pötscher, B. M. (1991). Effects of model selection on inference. Econometric Theory, 7(2), 163–185. https://doi.org/10.1017/S0266466600004382
    • (1991) Econometric Theory , vol.7 , Issue.2 , pp. 163-185
    • Pötscher, B.M.1
  • 41
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 42
    • 85004788542 scopus 로고
    • A general method for studying differences in factor means and factor structure between groups
    • Sörbom, D. (1974). A general method for studying differences in factor means and factor structure between groups. British Journal of Mathematical and Statistical Psychology, 27(2), 229–239. https://doi.org/10.1111/j.2044-8317.1974.tb00543.x
    • (1974) British Journal of Mathematical and Statistical Psychology , vol.27 , Issue.2 , pp. 229-239
    • Sörbom, D.1
  • 43
    • 0000895991 scopus 로고    scopus 로고
    • A note on multiple sample extensions of the RMSEA fit index
    • Steiger, J. H. (1998). A note on multiple sample extensions of the RMSEA fit index. Structural Equation Modeling: A Multidisciplinary Journal, 5(4), 411–419. https://doi.org/10.1080/10705519809540115
    • (1998) Structural Equation Modeling: A Multidisciplinary Journal , vol.5 , Issue.4 , pp. 411-419
    • Steiger, J.H.1
  • 44
    • 79955040218 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58(1), 267–288. https://doi.org/10.1111/j.1467-9868.2011.00771.x
    • (1996) Journal of the Royal Statistical Society, Series B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 46
    • 84960810185 scopus 로고    scopus 로고
    • R package version 0.4-14. Retrieved from
    • semTools Contributors (2016). semtools: Useful tools for structural equation modeling. R package version 0.4-14. Retrieved from http://cran.r-project.org/web/packages/semTools/index.html
    • (2016) semtools: Useful tools for structural equation modeling
  • 47
    • 84888376489 scopus 로고    scopus 로고
    • A penalty approach to differential item functioning in Rasch models
    • Tutz, G., & Schauberger, G. (2015). A penalty approach to differential item functioning in Rasch models. Psychometrika, 80(1), 21–43. https://doi.org/10.1007/s11336-013-9377-6
    • (2015) Psychometrika , vol.80 , Issue.1 , pp. 21-43
    • Tutz, G.1    Schauberger, G.2
  • 48
    • 84866456803 scopus 로고    scopus 로고
    • Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
    • Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological Methods, 17(2), 228–243. https://doi.org/10.1037/a0027127
    • (2012) Psychological Methods , vol.17 , Issue.2 , pp. 228-243
    • Vrieze, S.I.1
  • 49
    • 84871578687 scopus 로고    scopus 로고
    • Introduction to the special issue on sparsity and regularization methods
    • Wellner, J., & Zhang, T. (2012). Introduction to the special issue on sparsity and regularization methods. Statistical Science, 27(4), 447–449. https://doi.org/10.1214/12-STS409
    • (2012) Statistical Science , vol.27 , Issue.4 , pp. 447-449
    • Wellner, J.1    Zhang, T.2
  • 50
    • 0003095355 scopus 로고    scopus 로고
    • Exploring the measurement invariance of psychological instruments: Applications in the substance use domain
    • J. K. Bryant, M. Windle, &, S. G. West, (Eds.),, Washington, DC, American Psychological Association
    • Widaman, K. F., & Reise, S. P. (1997). Exploring the measurement invariance of psychological instruments: Applications in the substance use domain. In J. K. Bryant, M. Windle & S. G. West (Eds.), The science of prevention: Methodological advances from alcohol and substance abuse research (pp. 281–324). Washington, DC: American Psychological Association.
    • (1997) The science of prevention: Methodological advances from alcohol and substance abuse research , pp. 281-324
    • Widaman, K.F.1    Reise, S.P.2
  • 51
    • 34548098016 scopus 로고    scopus 로고
    • Detecting violations of factorial invariance using data-based specification searches: A Monte Carlo study
    • Yoon, M., & Millsap, R. E. (2007). Detecting violations of factorial invariance using data-based specification searches: A Monte Carlo study. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 435–463. https://doi.org/10.1080/10705510701301677
    • (2007) Structural Equation Modeling: A Multidisciplinary Journal , vol.14 , Issue.3 , pp. 435-463
    • Yoon, M.1    Millsap, R.E.2
  • 52
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics, 38(2), 894–942. https://doi.org/10.1214/09-AOS729
    • (2010) Annals of Statistics , vol.38 , Issue.2 , pp. 894-942
    • Zhang, C.H.1
  • 53
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • Zhao, P., & Yu, B. (2006). On model selection consistency of lasso. Journal of Machine Learning Research, 7, 2541–2563. https://doi.org/10.1109/TIT.2006.883611
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 54
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476), 1418–1429. https://doi.org/10.1198/016214506000000735
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1
  • 55
    • 84860701893 scopus 로고    scopus 로고
    • A penalized maximum likelihood approach to sparse factor analysis
    • Zou, H., Choi, J., & Oehlert, G. (2011). A penalized maximum likelihood approach to sparse factor analysis. Statistics and its Interface, 3, 429–436. https://doi.org/10.4310/SII.2010.v3.n4.a1
    • (2011) Statistics and its Interface , vol.3 , pp. 429-436
    • Zou, H.1    Choi, J.2    Oehlert, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.