메뉴 건너뛰기




Volumn 3, Issue 2, 2018, Pages

Towards a Computed-Aided Diagnosis System in Colonoscopy: Automatic Polyp Segmentation Using Convolution Neural Networks

Author keywords

colonoscopy; computer aided diagnosis; Convolutional neural networks

Indexed keywords


EID: 85097930395     PISSN: 24249068     EISSN: None     Source Type: Journal    
DOI: 10.1142/S2424905X18400020     Document Type: Article
Times cited : (74)

References (38)
  • 1
    • 84975735323 scopus 로고    scopus 로고
    • Frontiers of robotic endoscopic capsules: A review
    • G. Ciuti et al., Frontiers of robotic endoscopic capsules: A review, J. Microbio Robot. 11(1) (2016) 1-18.
    • (2016) J. Microbio Robot. , vol.11 , Issue.1 , pp. 1-18
    • Ciuti, G.1
  • 2
    • 84860237132 scopus 로고    scopus 로고
    • Factors influencing the miss rate of polyps in a back-to-back colonoscopy study
    • A. M. Leufkens et al., Factors influencing the miss rate of polyps in a back-to-back colonoscopy study, Endoscopy 44(5) (2012) 470-475.
    • (2012) Endoscopy , vol.44 , Issue.5 , pp. 470-475
    • Leufkens, A.M.1
  • 3
    • 0142151168 scopus 로고    scopus 로고
    • Computer-aided tumor detection in endoscopic video using color wavelet features
    • S. A. Karkanis et al., Computer-aided tumor detection in endoscopic video using color wavelet features. Inf. Technol. Biomed. 7(3) (2003) 141-152.
    • (2003) Inf. Technol. Biomed. , vol.7 , Issue.3 , pp. 141-152
    • Karkanis, S.A.1
  • 4
    • 84879910416 scopus 로고    scopus 로고
    • Texture-based polyp detection in colonoscopy
    • S. Ameling et al., Texture-based polyp detection in colonoscopy. Bildverarbeitung die Medizin 22(25) (2009) 346-350.
    • (2009) Bildverarbeitung Die Medizin , vol.22 , Issue.25 , pp. 346-350
    • Ameling, S.1
  • 5
    • 84959449815 scopus 로고    scopus 로고
    • Automated polyp detection in colonoscopy videos using shape and context information
    • N. Tajbakhsh, R. G. Suryakanth and L. Jianming, Automated polyp detection in colonoscopy videos using shape and context information, Trans. Med. Imag. 35(2) (2016) 630-644.
    • (2016) Trans. Med. Imag. , vol.35 , Issue.2 , pp. 630-644
    • Tajbakhsh, N.1    Suryakanth, R.G.2    Jianming, L.3
  • 6
    • 84929916705 scopus 로고    scopus 로고
    • WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs.saliency maps from physicians
    • J. Bernal et al., WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs.saliency maps from physicians, Comput. Med. Imaging Graph. 43 (2015) 99-111.
    • (2015) Comput. Med. Imaging Graph. , vol.43 , pp. 99-111
    • Bernal, J.1
  • 7
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition challenge
    • O. Russakovsky et al., ImageNet large scale visual recognition challenge, Int. J. Comput. Vis. 115(3) (2015) 211252.
    • (2015) Int. J. Comput. Vis. , vol.115 , Issue.3 , pp. 211252
    • Russakovsky, O.1
  • 8
    • 84952007662 scopus 로고    scopus 로고
    • The pascal visual object classes challenge: A retrospective
    • M. Everingham et al., The pascal visual object classes challenge: A retrospective, Int. J. Comput. Vis. 111(1) (2014) 98136.
    • (2014) Int. J. Comput. Vis. , vol.111 , Issue.1 , pp. 98136
    • Everingham, M.1
  • 10
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • O. Russakovsky et al., Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3) (2015) 211-252.
    • (2015) Int. J. Comput. Vis. , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 12
    • 84937522268 scopus 로고    scopus 로고
    • Going deeper with convolutions
    • C. Szegedy et al., Going deeper with convolutions, in Proc. IEEE CVPR (2015), pp. 1-9.
    • (2015) Proc. IEEE CVPR , pp. 1-9
    • Szegedy, C.1
  • 14
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long et al., Fully convolutional networks for semantic segmentation, in Proc. IEEE CVPR (2015), pp. 3431-3440.
    • (2015) Proc. IEEE CVPR , pp. 3431-3440
    • Long, J.1
  • 16
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, H. Seunghoon and H. Bohyung, Learning deconvolution network for semantic segmentation, in Proc. ICCV (2015), pp. 1520-1528.
    • (2015) Proc. ICCV , pp. 1520-1528
    • Noh, H.1    Seunghoon, H.2    Bohyung, H.3
  • 17
    • 84856656491 scopus 로고    scopus 로고
    • Indoor scene segmentation using a structured light sensor
    • N. Silberman and R. Fergus, Indoor scene segmentation using a structured light sensor, in Proc. ICCV (2011), pp. 601-608.
    • (2011) Proc. ICCV , pp. 601-608
    • Silberman, N.1    Fergus, R.2
  • 19
    • 85021069225 scopus 로고    scopus 로고
    • FuseNet: Incorporating depth into semantic segmentation via fusion-based CNN architecture
    • C. Hazirbas et al., FuseNet: Incorporating depth into semantic segmentation via fusion-based CNN architecture, in Proc. ACCV., Vol. 2 (2016), pp. 213-228.
    • (2016) Proc. ACCV. , vol.2 , pp. 213-228
    • Hazirbas, C.1
  • 20
    • 84861592104 scopus 로고    scopus 로고
    • Towards automatic polyp detection with a polyp appearance model
    • J. Bernal et al., Towards automatic polyp detection with a polyp appearance model, Pattern Recognit. 45(9) (2012) 31663182.
    • (2012) Pattern Recognit. , vol.45 , Issue.9 , pp. 31663182
    • Bernal, J.1
  • 21
    • 84966686780 scopus 로고    scopus 로고
    • Lesion detection of endoscopy images based on convolutional neural network features
    • R. Zhu et al., Lesion detection of endoscopy images based on convolutional neural network features, 2015 8th Congrers Image and Signal Processing (CISP), pp. 372-376.
    • 2015 8th Congrers Image and Signal Processing (CISP , pp. 372-376
    • Zhu, R.1
  • 23
    • 84968649810 scopus 로고    scopus 로고
    • Convolutional neural networks for medical image analysis: Full training or fine tuning?
    • N. Tajbakhsh et al., Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imaging 35(5) (2016) 1299-1312.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1299-1312
    • Tajbakhsh, N.1
  • 24
    • 85120521408 scopus 로고    scopus 로고
    • Fully convolutional neural networks for polyp segmentation in colonoscopy
    • P. Brandao, E. Mazomenos et al., Fully convolutional neural networks for polyp segmentation in colonoscopy, in Proc. SPIE, Vol. 191349 (2017), pp. 1-7.
    • (2017) Proc. SPIE 191349 , pp. 1-7
    • Brandao, P.1    Mazomenos, E.2
  • 25
    • 84861592104 scopus 로고    scopus 로고
    • Towards automatic polyp detection with a polyp appearance model
    • B. Bernal, F. Sanchez and F. Vilario, Towards automatic polyp detection with a polyp appearance model, Pattern Recognit. 45(9) (2012) 31663182.
    • (2012) Pattern Recognit. , vol.45 , Issue.9 , pp. 31663182
    • Bernal, B.1    Sanchez, F.2    Vilario, F.3
  • 26
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding con-volutional networks
    • M. D. Zeiler and R. Fergus, Visualizing and understanding con-volutional networks, in Proc. ECCV, Vol. 13 (2014), pp. 818-833.
    • (2014) Proc. ECCV , vol.13 , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 28
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in Proc. 32nd Int. Conf. Machine Learning (ICML 2015), Vol. 37 (2015), pp. 448-456.
    • (2015) Proc. 32nd Int. Conf. Machine Learning (ICML 2015) , vol.37 , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 29
    • 34948860577 scopus 로고    scopus 로고
    • Shape from shading under various imaging conditions
    • A. H. Ahmed and A. A. Farag, Shape from shading under various imaging conditions, in Proc. CVPR (2007), pp. 1-8.
    • (2007) Proc. CVPR , pp. 1-8
    • Ahmed, A.H.1    Farag, A.A.2
  • 30
    • 77951962940 scopus 로고    scopus 로고
    • Depth estimation based on multiview matching with depth/color segmentation and memory efficient belief propagation
    • T. Montserrat et al., Depth estimation based on multiview matching with depth/color segmentation and memory efficient belief propagation, in Proc. IEEE ICIP (2009), pp. 2353-2356.
    • (2009) Proc. IEEE ICIP , pp. 2353-2356
    • Montserrat, T.1
  • 31
    • 29144493512 scopus 로고    scopus 로고
    • Preemptive RANSAC for live structure and motion estimation
    • D. Nistr, Preemptive RANSAC for live structure and motion estimation, Mach. Vis. Appl. 16(5) (2005) 321-329.
    • (2005) Mach. Vis. Appl. , vol.16 , Issue.5 , pp. 321-329
    • Nistr, D.1
  • 32
    • 84949988466 scopus 로고    scopus 로고
    • Shape from texture without boundaries
    • D. A. Forsyth, Shape from texture without boundaries, in Proc. ECCV (2002), pp. 225-239.
    • (2002) Proc. ECCV , pp. 225-239
    • Forsyth, D.A.1
  • 33
    • 48149115712 scopus 로고    scopus 로고
    • Shape from shading for hybrid surfaces
    • A. Ahmed and A. Farag, Shape from shading for hybrid surfaces, ICIP, Vol. 2 (2007), pp. 525-528.
    • (2007) ICIP , vol.2 , pp. 525-528
    • Ahmed, A.1    Farag, A.2
  • 34
    • 67649404616 scopus 로고    scopus 로고
    • A unified framework for document restoration using inpainting and shape-from-shading
    • L. Zhang et al., A unified framework for document restoration using inpainting and shape-from-shading, Pattern Recognit. 42(11) (2009) 2961-2978.
    • (2009) Pattern Recognit. , vol.42 , Issue.11 , pp. 2961-2978
    • Zhang, L.1
  • 35
    • 84875833355 scopus 로고    scopus 로고
    • Metric depth recovery from monocular images using shape-from-shading and specularities
    • M. Visentini-Scarzanella, D. Stoyanov and G. Z. Yang, Metric depth recovery from monocular images using shape-from-shading and specularities, in Proc. ICIP (2012), pp. 25-28.
    • (2012) Proc. ICIP , pp. 25-28
    • Visentini-Scarzanella, M.1    Stoyanov, D.2    Yang, G.Z.3
  • 36
    • 1942507479 scopus 로고    scopus 로고
    • LaxFriedrichs sweeping scheme for static HamiltonJacobi equations
    • C. Y. Kao, S. Osher and J. Qian, LaxFriedrichs sweeping scheme for static HamiltonJacobi equations, J. Comput. Phys. 196(1) (2004) 367-391.
    • (2004) J. Comput. Phys. , vol.196 , Issue.1 , pp. 367-391
    • Kao, C.Y.1    Osher, S.2    Qian, J.3
  • 37
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Y. Jia et al., Caffe: Convolutional architecture for fast feature embedding, in Proc. ACMMM (2014), pp. 675-678.
    • (2014) Proc. ACMMM , pp. 675-678
    • Jia, Y.1
  • 38
    • 85021449496 scopus 로고    scopus 로고
    • Comparative validation of polyp detection methods in video colonoscopy: Results from the MICCAI 2015 endoscopic vision challenge
    • J. Bernal et al., Comparative validation of polyp detection methods in video colonoscopy: Results from the MICCAI 2015 endoscopic vision challenge, IEEE Trans. Med. Imaging, 36(6) (2016) 1231-1249.
    • (2016) IEEE Trans. Med. Imaging , vol.36 , Issue.6 , pp. 1231-1249
    • Bernal, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.