메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Normalizing the normalizers: Comparing and extending network normalization schemes

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL ACTIVATION; IMAGE ENHANCEMENT; UNIFIED MODELING LANGUAGE;

EID: 85088228386     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (38)

References (51)
  • 1
    • 51849128608 scopus 로고    scopus 로고
    • Sparse coding via thresholding and local competition in neural circuits
    • Sparse coding via thresholding and local competition in neural circuits. Neural Computation, 20(10): 2526-63, 2008. ISSN 08997667. doi: 10.1162/neco.2008.03-07-486.
    • (2008) Neural Computation , vol.20 , Issue.10 , pp. 2526-2563
  • 3
    • 85039174342 scopus 로고    scopus 로고
    • Layer normalization
    • abs
    • Ba, Jimmy Lei, Kiros, Jamie Ryan, and Hinton, Geoffrey E. Layer normalization. CoRR, abs/1607.06450, 2016.
    • (2016) CoRR
    • Ba, J.1    Lei, K.2    Ryan, J.3    Hinton, G.E.4
  • 4
    • 85083951049 scopus 로고    scopus 로고
    • Density modeling of images using a generalized normalization transformation
    • Ballé, Johannes, Laparra, Valero, and Simoncelli, Eero P. Density modeling of images using a generalized normalization transformation. ICLR, 2016.
    • (2016) ICLR
    • Ballé, J.1    Laparra, V.2    Simoncelli, E.P.3
  • 6
    • 84898409537 scopus 로고    scopus 로고
    • Low-complexity single-image super-resolution based on nonnegative neighbor embedding
    • Bevilacqua, Marco, Roumy, Aline, Guillemot, Christine, and Morel, Marie-Line Alberi. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC, 2012.
    • (2012) BMVC
    • Bevilacqua, M.1    Roumy, A.2    Guillemot, C.3    Morel, M.-L.A.4
  • 7
    • 0024917131 scopus 로고
    • Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex
    • 01
    • Bonds, A. B. Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex. Visual Neuroscience, 2(01):41-55, 1989.
    • (1989) Visual Neuroscience , vol.2 , pp. 41-55
    • Bonds, A.B.1
  • 8
    • 72149119066 scopus 로고    scopus 로고
    • Representation of concurrent stimuli by population activity in visual cortex
    • dec ISSN
    • Busse, L., Wade, A. R., and Carandini, M. Representation of Concurrent Stimuli by Population Activity in Visual Cortex. Neuron, 64(6):931-942, dec 2009. ISSN 0896-6273. doi: 10.1016/j. neuron.2009.11.004.
    • (2009) Neuron , vol.64 , Issue.6 , pp. 931-942
    • Busse, L.1    Wade, A.R.2    Carandini, M.3
  • 9
    • 84155167791 scopus 로고    scopus 로고
    • Normalization as a canonical neural computation. Nature reviews
    • nov ISSN
    • Carandini, M. and Heeger, D. J. Normalization as a canonical neural computation. Nature reviews. Neuroscience, 13(1):51-62, nov 2012. ISSN 1471-0048. doi: 10.1038/nrn3136.
    • (2012) Neuroscience , vol.13 , Issue.1 , pp. 51-62
    • Carandini, M.1    Heeger, D.J.2
  • 10
    • 84945462787 scopus 로고    scopus 로고
    • Flexible gating of contextual influences in natural vision
    • Coen-Cagli, R., Kohn, A., and Schwartz, O. Flexible gating of contextual influences in natural vision. Nature Neuroscience, 18(11):1648-1655, 2015. ISSN 1097-6256. doi: 10.1038/nn.4128.
    • (2015) Nature Neuroscience , vol.18 , Issue.11 , pp. 1648-1655
    • Coen-Cagli, R.1    Kohn, A.2    Schwartz, O.3
  • 11
    • 85014524093 scopus 로고    scopus 로고
    • Reducing overfitting in deep networks by decorrelating representations
    • Cogswell, Michael, Ahmed, Faruk, Girshick, Ross, Zitnick, Larry, and Batra, Dhruv. Reducing overfitting in deep networks by decorrelating representations. ICLR, 2015.
    • (2015) ICLR
    • Cogswell, M.1    Ahmed, F.2    Girshick, R.3    Zitnick, L.4    Batra, D.5
  • 13
  • 14
    • 84962128851 scopus 로고    scopus 로고
    • Image super-resolution using deep convolutional networks
    • Dong, Chao, Loy, Chen Change, He, Kaiming, and Tang, Xiaoou. Image super-resolution using deep convolutional networks. TPAMI, 38(2):295-307, 2016.
    • (2016) TPAMI , vol.38 , Issue.2 , pp. 295-307
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 16
    • 84986325538 scopus 로고    scopus 로고
    • Image style transfer using convolutional neural networks
    • Gatys, Leon A., Ecker, Alexander S., and Bethge, Matthias. Image style transfer using convolutional neural networks. In CVPR, 2016.
    • (2016) CVPR
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 17
    • 84872555593 scopus 로고    scopus 로고
    • Deep sparse rectifier neural networks
    • Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. Deep sparse rectifier neural networks. In AISTATS, 2011.
    • (2011) AISTATS
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 19
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 20
    • 0026904517 scopus 로고
    • Normalization of cell responses in cat striate cortex
    • Heeger, D. J. Normalization of cell responses in cat striate cortex. Vis Neurosci, 9(2):181-197, 1992. ISSN 09525238.
    • (1992) Vis Neurosci , vol.9 , Issue.2 , pp. 181-197
    • Heeger, D.J.1
  • 22
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Ioffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 23
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • Jarrett, K., Kavukcuoglu, K., Ranzato, M. A., and LeCun, Y. What is the best multi-stage architecture for object recognition? ICCV, 2009.
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.A.3    LeCun, Y.4
  • 25
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 28
    • 84989340411 scopus 로고    scopus 로고
    • Bridging the gaps between residual learning, recurrent neural networks and visual cortex
    • abs
    • Liao, Q. and Poggio, T. Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex. CoRR, abs/1604.03640, 2016.
    • (2016) CoRR
    • Liao, Q.1    Poggio, T.2
  • 29
    • 85041931271 scopus 로고    scopus 로고
    • Streaming normalization: Towards simpler and More biologically-plausible Normalizations for Online and Recurrent learning
    • abs
    • Liao, Qianli, Kawaguchi, Kenji, and Poggio, Tomaso. Streaming Normalization: Towards Simpler and More Biologically-plausible Normalizations for Online and Recurrent Learning. CoRR, abs/1610.06160, 2016a.
    • (2016) CoRR
    • Liao, Q.1    Kawaguchi, K.2    Poggio, T.3
  • 30
    • 85018904825 scopus 로고    scopus 로고
    • Learning deep parsimonious representations
    • Liao, Renjie, Schwing, Alexander, Zemel, Richard, and Urtasun, Raquel. Learning deep parsimonious representations. NIPS, 2016b.
    • (2016) NIPS
    • Liao, R.1    Schwing, A.2    Zemel, R.3    Urtasun, R.4
  • 31
    • 85071044938 scopus 로고    scopus 로고
    • Reducing statistical dependencies in natural signals using radial Gaussianization
    • Lyu, Siwei and Simoncelli, Eero P. Reducing statistical dependencies in natural signals using radial Gaussianization. NIPS, 2008.
    • (2008) NIPS
    • Lyu, S.1    Simoncelli, E.P.2
  • 32
    • 30144432518 scopus 로고    scopus 로고
    • Nonlinear image representation for efficient perceptual coding
    • Malo, J., Epifanio, I., Navarro, R., and Simoncelli, E. P. Nonlinear image representation for efficient perceptual coding. TIP, 15(1):68-80, 2006.
    • (2006) TIP , vol.15 , Issue.1 , pp. 68-80
    • Malo, J.1    Epifanio, I.2    Navarro, R.3    Simoncelli, E.P.4
  • 33
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • Martin, David, Fowlkes, Charless, Tal, Doron, and Malik, Jitendra. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001.
    • (2001) ICCV
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 34
    • 77952381039 scopus 로고    scopus 로고
    • Divisive normalization in olfactory population codes
    • Olsen, S. R, Bhandawat, V., and Wilson, R. I. Divisive Normalization in Olfactory Population Codes. Neuron, 66(2):287-299, 2010. ISSN 10974199. doi: 10.1016/j.neuron.2010.04.009.
    • (2010) Neuron , vol.66 , Issue.2 , pp. 287-299
    • Olsen, S.R.1    Bhandawat, V.2    Wilson, R.I.3
  • 35
    • 38949193299 scopus 로고    scopus 로고
    • Why is real-world visual object recognition hard?
    • jan
    • Pinto, N., Cox, D. D., and DiCarlo, J. J. Why is Real-World Visual Object Recognition Hard? PLoS Comput Biol, 4(1):e27, jan 2008. doi: 10.1371/journal.pcbi.0040027.
    • (2008) PLoS Comput Biol , vol.4 , Issue.1
    • Pinto, N.1    Cox, D.D.2    DiCarlo, J.J.3
  • 36
    • 58549119195 scopus 로고    scopus 로고
    • The normalization model of attention
    • jan ISSN
    • Reynolds, J. H. and Heeger, D. J. The normalization model of attention. Neuron, 61(2):168-85, jan 2009. ISSN 1097-4199. doi: 10.1016/j.neuron.2009.01.002.
    • (2009) Neuron , vol.61 , Issue.2 , pp. 168-185
    • Reynolds, J.H.1    Heeger, D.J.2
  • 37
    • 77953798517 scopus 로고    scopus 로고
    • Population coding under normalization
    • Ringach, D. L. Population coding under normalization. Vision Research, 50(22):2223-2232, 2009. ISSN 18785646. doi: 10.1016/j.visres.2009.12.007.
    • (2009) Vision Research , vol.50 , Issue.22 , pp. 2223-2232
    • Ringach, D.L.1
  • 38
    • 85017457992 scopus 로고    scopus 로고
    • Weight normalization: A simple reparameterization to accelerate training of deep neural networks
    • Salimans, Tim and Kingma, Diederik P. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In NIPS, 2016.
    • (2016) NIPS
    • Salimans, T.1    Kingma, D.P.2
  • 39
    • 85013055161 scopus 로고    scopus 로고
    • Group sparse regularization for deep neural networks
    • abs
    • Scardapane, S., Comminiello, D., Hussain, A., and Uncin, A. Group sparse regularization for deep neural networks. CoRR, abs/1607.00485, 2016.
    • (2016) CoRR
    • Scardapane, S.1    Comminiello, D.2    Hussain, A.3    Uncin, A.4
  • 40
    • 0034939633 scopus 로고    scopus 로고
    • Natural signal statistics and sensory gain control
    • Schwartz, O. and Simoncelli, E. P. Natural signal statistics and sensory gain control. Nat Neurosci, 4 (8):819-825, 2001. ISSN 1097-6256. doi: 10.1038/90526.
    • (2001) Nat Neurosci , vol.4 , Issue.8 , pp. 819-825
    • Schwartz, O.1    Simoncelli, E.P.2
  • 41
    • 65349190024 scopus 로고    scopus 로고
    • Perceptual organization in the tilt illusion
    • apr ISSN
    • Schwartz, O., J., Sejnowski T., and P., Dayan. Perceptual organization in the tilt illusion. Journal of Vision, 9(4):1-20, apr 2009. ISSN 1534-7362.
    • (2009) Journal of Vision , vol.9 , Issue.4 , pp. 1-20
    • Schwartz, O.J.1    Sejnowski, T.2    Dayan, P.3
  • 43
    • 0032031687 scopus 로고    scopus 로고
    • A model of neuronal responses in visual area MT
    • Simoncelli, E. P. and Heeger, D. J. A model of neuronal responses in visual area MT. Vision Research, 38(5):743-761, 1998.
    • (1998) Vision Research , vol.38 , Issue.5 , pp. 743-761
    • Simoncelli, E.P.1    Heeger, D.J.2
  • 44
    • 84873505375 scopus 로고    scopus 로고
    • Temporal adaptation enhances efficient contrast gain control on natural images
    • jan ISSN
    • Sinz, Fabian and Bethge, Matthias. Temporal Adaptation Enhances Efficient Contrast Gain Control on Natural Images. PLoS Computational Biology, 9(1):e1002889, jan 2013. ISSN 1553734X.
    • (2013) PLoS Computational Biology , vol.9 , Issue.1
    • Sinz, F.1    Bethge, M.2
  • 45
    • 85071034830 scopus 로고    scopus 로고
    • The conjoint effect of divisive normalization and orientation selectivity on redundancy reduction
    • Sinz, Fabian H and Bethge, Matthias. The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction. In NIPS, 2008.
    • (2008) NIPS
    • Sinz, F.H.1    Bethge, M.2
  • 46
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • Srivastava, Nitish, Hinton, Geoffrey E, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: a simple way to prevent neural networks from overfitting. JMLR, 15(1):1929-1958, 2014.
    • (2014) JMLR , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1    Hinton2    Geoffrey, E.3    Krizhevsky, A.4    Sutskever, I.5    Salakhutdinov, R.6
  • 47
    • 84898792173 scopus 로고    scopus 로고
    • Anchored neighborhood regression for fast example-based super-resolution
    • Timofte, Radu, De Smet, Vincent, and Van Gool, Luc. Anchored neighborhood regression for fast example-based super-resolution. In ICCV, 2013.
    • (2013) ICCV
    • Timofte, R.1    De Smet, V.2    Van Gool, L.3
  • 48
    • 85039172195 scopus 로고    scopus 로고
    • Instance normalization: The missing ingredient for fast stylization
    • abs
    • Ulyanov, Dmitry, Vedaldi, Andrea, and Lempitsky, Victor S. Instance normalization: The missing ingredient for fast stylization. CoRR, abs/1607.08022, 2016.
    • (2016) CoRR
    • Ulyanov, D.1    Vedaldi, A.2    Lempitsky, V.S.3
  • 49
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • Wang, Zhou, Bovik, Alan C, Sheikh, Hamid R, and Simoncelli, Eero P. Image quality assessment: from error visibility to structural similarity. TIP, 13(4):600-612, 2004.
    • (2004) TIP , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3    Simoncelli, E.P.4
  • 50
    • 84944053926 scopus 로고    scopus 로고
    • Recurrent neural network regularization
    • abs
    • Zaremba, Wojciech, Sutskever, Ilya, and Vinyals, Oriol. Recurrent neural network regularization. CoRR, abs/1409.2329, 2014.
    • (2014) CoRR
    • Zaremba, W.1    Sutskever, I.2    Vinyals, O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.