-
1
-
-
0042967741
-
Optimal structure identification with greedy search
-
D.M. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3:507-554, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
2
-
-
84888174793
-
Learning sparse causal models is not np-hard
-
P. S. Ann Nicholson, editor, pages AUAI Press
-
T. Claasen, J. M. Mooij, and T. Heskes. Learning sparse causal models is not np-hard. In P. S. Ann Nicholson, editor, Proceedings of the Twenty-Ninth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-13), volume 29, pages 172-181. AUAI Press, 2013.
-
(2013)
Proceedings of the Twenty-Ninth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-13)
, vol.29
, pp. 172-181
-
-
Claasen, T.1
Mooij, J. M.2
Heskes, T.3
-
3
-
-
84867677322
-
Learning high-dimensional directed acyclic graphs with latent and selection variables
-
D. Colombo, M. H. Maathuis, M. Kalisch, and T. Richardson. Learning high-dimensional directed acyclic graphs with latent and selection variables. Annals of Statistics, 40(1):294-321, 2012.
-
(2012)
Annals of Statistics
, vol.40
, Issue.1
, pp. 294-321
-
-
Colombo, D.1
Maathuis, M. H.2
Kalisch, M.3
Richardson, T.4
-
4
-
-
21844452434
-
Learning hidden variable networks: The information bottleneck approach
-
G. Elidan and N. Friedman. Learning hidden variable networks: The information bottleneck approach. J Mach Learn Res, 6:81-127, 2005.
-
(2005)
J Mach Learn Res
, vol.6
, pp. 81-127
-
-
Elidan, G.1
Friedman, N.2
-
5
-
-
0000854197
-
The bayesian structural em algorithm
-
G. Cooper and S. Moral, editors, pages Madison, WI, Morgan Kaurmann
-
N. Friedman. The bayesian structural em algorithm. In G. Cooper and S. Moral, editors, UAI'98 Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, pages 129- 137, Madison, WI, 1998. Morgan Kaurmann.
-
(1998)
UAI'98 Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence
, pp. 129-137
-
-
Friedman, N.1
-
6
-
-
52949107186
-
Estimation of causal effects using linear non-gaussian causal models with hidden variables
-
P. O. Hoyer, S. Shimizu, A. Kerminen, and M. Palviainen. Estimation of causal effects using linear non-gaussian causal models with hidden variables. International Journal of Approximate Reasoning, 49(2):362-378, 2008.
-
(2008)
International Journal of Approximate Reasoning
, vol.49
, Issue.2
, pp. 362-378
-
-
Hoyer, P. O.1
Shimizu, S.2
Kerminen, A.3
Palviainen, M.4
-
7
-
-
84888160038
-
Discovering cyclic causal models with latent variables: A general sat-based procedure
-
P. S. Ann Nicholson, editor, pages Corvallis, Oregon, AUAI Press
-
A. Hyttinen, P. Hoyer, F. Eberhardt, and M. Jarvisalo. Discovering cyclic causal models with latent variables: A general sat-based procedure. In P. S. Ann Nicholson, editor, Proceedings of the Twenty-Ninth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-13), volume 29, pages 301-310, Corvallis, Oregon, 2013. AUAI Press.
-
(2013)
Proceedings of the Twenty-Ninth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-13)
, vol.29
, pp. 301-310
-
-
Hyttinen, A.1
Hoyer, P.2
Eberhardt, F.3
Jarvisalo, M.4
-
8
-
-
84907043501
-
Causal clustering for 2-factor measurement models
-
T. Calders, F. Esposito, E. Hllermeier, and R. Meo, editors, pages Springer
-
E. Kummerfeld, J. Ramsey, R. Yang, P. Spirtes, and R. Scheines. Causal clustering for 2-factor measurement models. In T. Calders, F. Esposito, E. Hllermeier, and R. Meo, editors, Machine Learning and Knowledge Discovery in Databases, pages 34-49. Springer, 2014.
-
(2014)
Machine Learning and Knowledge Discovery in Databases
, pp. 34-49
-
-
Kummerfeld, E.1
Ramsey, J.2
Yang, R.3
Spirtes, P.4
Scheines, R.5
-
9
-
-
84941750381
-
What is going on inside the arrows? discovering the hidden springs in causal models
-
A. Murray-Watters and C. Glymour. What is going on inside the arrows? discovering the hidden springs in causal models. Philosophy of Science, 82(4):pp. 556-586, 2015.
-
(2015)
Philosophy of Science
, vol.82
, Issue.4
, pp. 556-586
-
-
Murray-Watters, A.1
Glymour, C.2
-
11
-
-
85016250379
-
Scaling up greedy equivalence search for continuous variables
-
CoRR, abs/1507.07749
-
J. D. Ramsey. Scaling up greedy equivalence search for continuous variables. CoRR, abs/1507.07749, 2015. URL http://arxiv.org/abs/1507.07749.
-
(2015)
-
-
Ramsey, J. D.1
-
12
-
-
33646379109
-
Learning the structure of linear latent variable models
-
R. Silva, R. Scheines, C. Glymour, and P. Spirtes. Learning the structure of linear latent variable models. J Mach Learn Res, 7:191-246, 2006.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 191-246
-
-
Silva, R.1
Scheines, R.2
Glymour, C.3
Spirtes, P.4
-
13
-
-
0042112503
-
Causal discovery in the presence of latent variables and selection bias
-
G. Cooper and C. Glymour, editors, pages AAAI Press
-
P. Spirtes, T. RIchardson, and C. Meek. Causal discovery in the presence of latent variables and selection bias. In G. Cooper and C. Glymour, editors, Computation, Causality, and Discovery, pages 211-252. AAAI Press, 1999.
-
(1999)
Computation, Causality, and Discovery
, pp. 211-252
-
-
Spirtes, P.1
RIchardson, T.2
Meek, C.3
-
14
-
-
0003614273
-
-
The MIT Press
-
P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search, SecondEdition(Adaptive Computation and Machine Learning). The MIT Press, 2001.
-
(2001)
Causation, Prediction, and Search, SecondEdition(Adaptive Computation and Machine Learning)
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
|