메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1-13

The Cauchy problem for a class of fractional impulsive differential equations with delay

Author keywords

Caputo fractional derivative; Existence and uniqueness; Impulsive equations; Time delay

Indexed keywords


EID: 85087225088     PISSN: None     EISSN: 14173875     Source Type: Journal    
DOI: 10.14232/ejqtde.2012.1.37     Document Type: Article
Times cited : (10)

References (32)
  • 1
    • 77956189880 scopus 로고    scopus 로고
    • Darboux problem for impulsive partial hyper- bolic differential equations of fractional order with variable times and infinite delay
    • S. Abbas, R.P. Agarwal, M. Benchohra, Darboux problem for impulsive partial hyper- bolic differential equations of fractional order with variable times and infinite delay, Nonlinear Anal. Hybrid Syst. 4 (2010) 818-829.
    • (2010) Nonlinear Anal. Hybrid Syst , vol.4 , pp. 818-829
    • Abbas, S.1    Agarwal, R.P.2    Benchohra, M.3
  • 2
    • 77949264980 scopus 로고    scopus 로고
    • A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions
    • R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010) 973-1033
    • (2010) Acta Appl. Math , vol.109 , pp. 973-1033
    • Agarwal, R.P.1    Benchohra, M.2    Hamani, S.3
  • 4
    • 85088716399 scopus 로고    scopus 로고
    • On singular solutions for second order delay differential equations
    • M. Bartusek, On singular solutions for second order delay differential equations, Electron. J. Qual. Theory Differ. Equ. 3 (2012) 1-11.
    • (2012) Electron. J. Qual. Theory Differ. Equ , vol.3 , pp. 1-11
    • Bartusek, M.1
  • 5
    • 77953490378 scopus 로고    scopus 로고
    • Positive solutions for system of nonlinear fractional differential equations in two dimensions with delay
    • Art. ID 536317
    • A. Babakhani, Positive solutions for system of nonlinear fractional differential equations in two dimensions with delay, Abstr. Appl. Anal. 2010(2010), 16 pages. Art. ID 536317.
    • (2010) Abstr. Appl. Anal , vol.2010 , pp. 16
    • Babakhani, A.1
  • 6
    • 34848916710 scopus 로고    scopus 로고
    • Existence results for fractional order functional differential equations with infinite delay
    • M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008) 1340-1350.
    • (2008) J. Math. Anal. Appl , vol.338 , pp. 1340-1350
    • Benchohra, M.1    Henderson, J.2    Ntouyas, S.K.3    Ouahab, A.4
  • 7
    • 58249118048 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions to impulsive fractional differential equations
    • M. Benchohra, B.A. Slimani, Existence and uniqueness of solutions to impulsive fractional differential equations, Electron. J. Differential Equations 10 (2009) 1-11.
    • (2009) Electron. J. Differential Equations , vol.10 , pp. 1-11
    • Benchohra, M.1    Slimani, B.A.2
  • 8
    • 79955000487 scopus 로고    scopus 로고
    • Existence of solutions to anti-periodic boundary value problem for nonlinear fractional differential equations with impulses
    • Art. ID 915689
    • A.P. Chen, Y. Chen, Existence of solutions to anti-periodic boundary value problem for nonlinear fractional differential equations with impulses, Adv. Difference Equ. 2011 (2011) 17pages. Art. ID 915689.
    • (2011) Adv. Difference Equ , vol.2011 , pp. 17
    • Chen, A.P.1    Chen, Y.2
  • 9
    • 77957359943 scopus 로고    scopus 로고
    • New uniqueness results of solutions for fractional differential equations with infinite delay
    • J. Deng, H. Qu, New uniqueness results of solutions for fractional differential equations with infinite delay, Comput. Math. Appl. 60 (2010) 2253-2259.
    • (2010) Comput. Math. Appl , vol.60 , pp. 2253-2259
    • Deng, J.1    Qu, H.2
  • 10
    • 84856291615 scopus 로고    scopus 로고
    • On the concept and existence of solution for impulsive fractional differential equations
    • M. Feckan, Y. Zhou, J.R. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 3050-3060.
    • (2012) Commun. Nonlinear Sci. Numer. Simul , vol.17 , pp. 3050-3060
    • Feckan, M.1    Zhou, Y.2    Wang, J.R.3
  • 11
    • 84655176447 scopus 로고    scopus 로고
    • Solvability of a fractional boundary value problem with fractional integral condition
    • A. Guezane-Lakouda, R. Khaldi, Solvability of a fractional boundary value problem with fractional integral condition, Nonlinear Anal. 75 (2012) 2692-2700.
    • (2012) Nonlinear Anal , vol.75 , pp. 2692-2700
    • Guezane-Lakouda, A.1    Khaldi, R.2
  • 13
    • 77956684069 scopus 로고    scopus 로고
    • Theory and Applications of Fractional Differential Equations
    • Elsevier Science B.V., Amsterdam
    • A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.
    • (2006) North-Holland Mathematics Studies , vol.204
    • Kilbas, A.1    Srivastava, H.M.2    Trujillo, J.J.3
  • 16
    • 74149085889 scopus 로고    scopus 로고
    • On neutral impulsive stochastic integro-differential equations with infinite delays via fractional operators
    • A.H. Lin, Y. Ren, N.M. Xia, On neutral impulsive stochastic integro-differential equations with infinite delays via fractional operators, Math. Comput. Model. 51 (2010) 413-424.
    • (2010) Math. Comput. Model , vol.51 , pp. 413-424
    • Lin, A.H.1    Ren, Y.2    Xia, N.M.3
  • 17
    • 0001044887 scopus 로고
    • Relaxation in filled polymers: A fractional calculus approach
    • F. Metzler, W. Schick, H.G. Kilian, T.F. Nonnenmacher, Relaxation in filled polymers: a fractional calculus approach, J. Chem. Phys. 103 (1995) 7180-7186.
    • (1995) J. Chem. Phys , vol.103 , pp. 7180-7186
    • Metzler, F.1    Schick, W.2    Kilian, H.G.3    Nonnenmacher, T.F.4
  • 18
    • 17644375826 scopus 로고    scopus 로고
    • An eigenvalue based approach for stabilization of linear time-delay systems of neutral type
    • W. Michiels, T. Vyhlidal, An eigenvalue based approach for stabilization of linear time-delay systems of neutral type, Automatica 41 (2005) 991-998.
    • (2005) Automatica , vol.41 , pp. 991-998
    • Michiels, W.1    Vyhlidal, T.2
  • 20
    • 0004182814 scopus 로고
    • Academic Press, New York EJQTDE
    • K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. EJQTDE, 2012 No. 37, p. 12
    • (1974) The Fractional Calculus , vol.2012 , Issue.37 , pp. 12
    • Oldham, K.B.1    Spanier, J.2
  • 21
    • 77954464939 scopus 로고    scopus 로고
    • On multiple-delay output feedback stabilization of LTI plants
    • S. Roy, A. Saberi, and Y. Wan, On multiple-delay output feedback stabilization of LTI plants, Int. J. Robust Nonlinear Control 20 (2010) 1299-1305.
    • (2010) Int. J. Robust Nonlinear Control , vol.20 , pp. 1299-1305
    • Roy, S.1    Saberi, A.2    Wan, Y.3
  • 25
    • 4944222756 scopus 로고    scopus 로고
    • Dynamics of oscillations in a multi-dimensional delay differential system
    • E. Shustin, Dynamics of oscillations in a multi-dimensional delay differential system, Discrete and Contin. Dyn. Syst. Ser. A 11 (2-3) (2004), 557-576.
    • (2004) Discrete and Contin. Dyn. Syst. Ser. A , vol.11 , Issue.2-3 , pp. 557-576
    • Shustin, E.1
  • 27
    • 77950189802 scopus 로고    scopus 로고
    • Existence results for the three-point impulsive boundary value problem involving fractional differential equations
    • Y.S. Tian, Z.B. Bai, Existence results for the three-point impulsive boundary value problem involving fractional differential equations, Comput. Math. Appl. 59 (2010) 2601-2609.
    • (2010) Comput. Math. Appl , vol.59 , pp. 2601-2609
    • Tian, Y.S.1    Bai, Z.B.2
  • 28
    • 79960981115 scopus 로고    scopus 로고
    • Some existence results for impulsive nonlinear fractional differential equations with mixed boundary conditions
    • G.T. Wang, B. Ahmad, L.H. Zhang, Some existence results for impulsive nonlinear fractional differential equations with mixed boundary conditions, Comput. Math. Appl. 62 (2011) 1389-1397.
    • (2011) Comput. Math. Appl , vol.62 , pp. 1389-1397
    • Wang, G.T.1    Ahmad, B.2    Zhang, L.H.3
  • 29
    • 77956182987 scopus 로고    scopus 로고
    • The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay
    • X.M. Zhang, X.Y. Huang, Z.H. Liu, The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear Anal. Hybrid Syst. 4 (2010) 775-781.
    • (2010) Nonlinear Anal. Hybrid Syst , vol.4 , pp. 775-781
    • Zhang, X.M.1    Huang, X.Y.2    Liu, Z.H.3
  • 30
    • 67349177003 scopus 로고    scopus 로고
    • Existence and uniqueness for fractional neutral differential equations with infinite delay
    • Y. Zhou, F. Jiao, J. Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal. 71 (2009) 3249-3256.
    • (2009) Nonlinear Anal , vol.71 , pp. 3249-3256
    • Zhou, Y.1    Jiao, F.2    Li, J.3
  • 31
    • 67651102732 scopus 로고    scopus 로고
    • Research on some problems for nonlinear operators
    • C.X. Zhu, Research on some problems for nonlinear operators, Nonlinear Anal. 71 (2009) 4568-4571.
    • (2009) Nonlinear Anal , vol.71 , pp. 4568-4571
    • Zhu, C.X.1
  • 32
    • 33845873073 scopus 로고    scopus 로고
    • Random ambiguous point of random k(ω)-set-contractive operator
    • C.X. Zhu, Z.B. Xu, Random ambiguous point of random k(ω)-set-contractive operator, J. Math. Anal. Appl. 328 (1) (2007) 2-6.
    • (2007) J. Math. Anal. Appl , vol.328 , Issue.1 , pp. 2-6
    • Zhu, C.X.1    Xu, Z.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.