메뉴 건너뛰기




Volumn 44, Issue , 2008, Pages 1-21

Existence results for differential equations with fractional order and impulses

Author keywords

Caputo fractional derivative; Existence; Fixed point; Fractional differential equations; Fractional integral; Impulses; Initial value problem; Nonlocal conditions; Uniqueness

Indexed keywords


EID: 67651103488     PISSN: 15120015     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (140)

References (46)
  • 1
    • 67349262151 scopus 로고    scopus 로고
    • Existence results for semilinear functional differential inclusions involving Riemann–Liouville fractional derivative
    • to appear
    • R. P. Agarwal, M. Belmekki, and M. Benchohra, Existence results for semilinear functional differential inclusions involving Riemann–Liouville fractional derivative. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. (to appear).
    • Dyn. Contin. Discrete Impuls. Syst. Ser. a Math. Anal.
    • Agarwal, R.P.1    Belmekki, M.2    Benchohra, M.3
  • 2
    • 85070413475 scopus 로고    scopus 로고
    • Boundary value problems for differential Inclusions with fractional order
    • to appear
    • R. P. Agarwal, M. Benchohra, and S. Hamani, Boundary value problems for differential Inclusions with fractional order. Adv. Stud. Contemp. Math. (to appear).
    • Adv. Stud. Contemp. Math.
    • Agarwal, R.P.1    Benchohra, M.2    Hamani, S.3
  • 4
    • 37349041073 scopus 로고    scopus 로고
    • Perturbed functional differential equations with fractional order
    • A. Belarbi, M. Benchohra, S. Hamani, and S. K. Ntouyas, Perturbed functional differential equations with fractional order. Commun. Appl. Anal. 11 (2007), No. 3-4, 429–440.
    • (2007) Commun. Appl. Anal. , vol.11 , Issue.3-4 , pp. 429-440
    • Belarbi, A.1    Benchohra, M.2    Hamani, S.3    Ntouyas, S.K.4
  • 5
    • 70350087351 scopus 로고    scopus 로고
    • Nonlinear boundary value problems for differential Inclusions with Caputo fractional derivative
    • to appear
    • M. Benchohra and S. Hamani, Nonlinear boundary value problems for differential Inclusions with Caputo fractional derivative. Topol. Methods Nonlinear Anal. (to appear).
    • Topol. Methods Nonlinear Anal.
    • Benchohra, M.1    Hamani, S.2
  • 6
    • 58249103422 scopus 로고    scopus 로고
    • Boundary value problems for differential equations with fractional order
    • M. Benchohra, S. Hamani, and S. K. Ntouyas, Boundary value problems for differential equations with fractional order. Surv. Math. Appl. 3 (2008), 1–12.
    • (2008) Surv. Math. Appl. , vol.3 , pp. 1-12
    • Benchohra, M.1    Hamani, S.2    Ntouyas, S.K.3
  • 8
    • 34848916710 scopus 로고    scopus 로고
    • Existence results for fractional order functional differential equations with infinite delay
    • M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338 (2008), No. 2, 1340–1350.
    • (2008) J. Math. Anal. Appl. , vol.338 , Issue.2 , pp. 1340-1350
    • Benchohra, M.1    Henderson, J.2    Ntouyas, S.K.3    Ouahab, A.4
  • 9
    • 58149196822 scopus 로고    scopus 로고
    • Existence results for fractional functional differential inclusions with infinite delay and applications to control theory
    • M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for fractional functional differential inclusions with infinite delay and applications to control theory. Fract. Calc. Appl. Anal. 11 (2008), No. 1, 35–56.
    • (2008) Fract. Calc. Appl. Anal. , vol.11 , Issue.1 , pp. 35-56
    • Benchohra, M.1    Henderson, J.2    Ntouyas, S.K.3    Ouahab, A.4
  • 11
    • 0040676467 scopus 로고    scopus 로고
    • A fixed point theorem of Krasnoselskii–Schaefer type
    • T. A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii–Schaefer type. Math. Nachr. 189 (1998), 23–31.
    • (1998) Math. Nachr. , vol.189 , pp. 23-31
    • Burton, T.A.1    Kirk, C.2
  • 12
    • 44949272606 scopus 로고
    • Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem
    • L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (1991), No. 2, 494–505.
    • (1991) J. Math. Anal. Appl. , vol.162 , Issue.2 , pp. 494-505
    • Byszewski, L.1
  • 13
    • 0002601430 scopus 로고
    • Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem
    • 50th Anniv. Cracow Univ. Technol. Anniv. Issue, 6, Cracow Univ. Technol., Krakow
    • L. Byszewski, Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem. Selected problems of mathematics, 25–33, 50th Anniv. Cracow Univ. Technol. Anniv. Issue, 6, Cracow Univ. Technol., Krakow, 1995.
    • (1995) Selected Problems of Mathematics , pp. 25-33
    • Byszewski, L.1
  • 14
    • 84948514180 scopus 로고
    • Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space
    • L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40 (1991), No. 1, 11–19.
    • (1991) Appl. Anal. , vol.40 , Issue.1 , pp. 11-19
    • Byszewski, L.1    Lakshmikantham, V.2
  • 15
    • 0030528474 scopus 로고    scopus 로고
    • Existence and uniqueness for a nonlinear fractional differential equation
    • D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 204 (1996), No. 2, 609–625.
    • (1996) J. Math. Anal. Appl. , vol.204 , Issue.2 , pp. 609-625
    • Delbosco, D.1    Rodino, L.2
  • 16
    • 0002795136 scopus 로고    scopus 로고
    • On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity
    • F. Keil, W. Mackens, H. Voss, and J. Werther, Eds., Springer-Verlag, Heidelberg
    • K. Diethelm and A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. In “Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties” (F. Keil, W. Mackens, H. Voss, and J. Werther, Eds.), pp. 217–224, Springer-Verlag, Heidelberg, 1999.
    • (1999) Scientifice Computing in Chemical Engineering Ii-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties , pp. 217-224
    • Diethelm, K.1    Freed, A.D.2
  • 17
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • K. Diethelm and N. J. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002), No. 2, 229–248.
    • (2002) J. Math. Anal. Appl. , vol.265 , Issue.2 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 18
    • 0043044718 scopus 로고    scopus 로고
    • Numerical solution of fractional order differential equations by extrapolation
    • K. Diethelm and G. Walz, Numerical solution of fractional order differential equations by extrapolation. Numer. Algorithms 16 (1997), No. 3-4, 231–253.
    • (1997) Numer. Algorithms , vol.16 , Issue.3-4 , pp. 231-253
    • Diethelm, K.1    Walz, G.2
  • 19
    • 0038086852 scopus 로고
    • Fractional order evolution equations
    • A. M. A. El-Sayed, Fractional order evolution equations. J. Fract. Calc. 7 (1995), 89–100.
    • (1995) J. Fract. Calc. , vol.7 , pp. 89-100
    • El-Sayed, A.M.A.1
  • 20
    • 0030531939 scopus 로고    scopus 로고
    • Fractional-order diffusion-wave equation
    • A. M. A. El-Sayed, Fractional-order diffusion-wave equation. Internat. J. Theoret. Phys. 35 (1996), No. 2, 311–322.
    • (1996) Internat. J. Theoret. Phys. , vol.35 , Issue.2 , pp. 311-322
    • El-Sayed, A.M.A.1
  • 21
    • 0032115069 scopus 로고    scopus 로고
    • Nonlinear functional-differential equations of arbitrary orders
    • A. M. A. El-Sayed, Nonlinear functional-differential equations of arbitrary orders. Nonlinear Anal. 33 (1998), No. 2, 181–186.
    • (1998) Nonlinear Anal , vol.33 , Issue.2 , pp. 181-186
    • El-Sayed, A.M.A.1
  • 23
    • 0028878140 scopus 로고
    • A fractional calculus approach of self-similar protein dynamics
    • W. G. Glockle and T.F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68 (1995), 46–53.
    • (1995) Biophys. J. , vol.68 , pp. 46-53
    • Glockle, W.G.1    Nonnenmacher, T.F.2
  • 24
    • 1842512912 scopus 로고    scopus 로고
    • Springer Monographs in Mathematics. Springer-Verlag, New York
    • A. Granas and J. Dugundji, Fixed point theory. Springer Monographs in Mathematics. Springer-Verlag, New York, 2003.
    • (2003) Fixed Point Theory
    • Granas, A.1    Dugundji, J.2
  • 25
    • 33745869026 scopus 로고    scopus 로고
    • Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives
    • N. Heymans and I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 45 (2006), No. 5, 765–772.
    • (2006) Rheologica Acta , vol.45 , Issue.5 , pp. 765-772
    • Heymans, N.1    Podlubny, I.2
  • 26
    • 0003427295 scopus 로고    scopus 로고
    • (Edited by R. Hilfer). World Scientific Publishing Co., Inc., River Edge, NJ
    • R. Hilfer, Applications of fractional calculus in physics. (Edited by R. Hilfer). World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
    • (2000) Applications of Fractional Calculus in Physics
    • Hilfer, R.1
  • 27
    • 85070409906 scopus 로고    scopus 로고
    • Positive solutions of the semipositone Sturm-Liouville boundary value problem
    • electronic
    • E. R. Kaufmann and E. Mboumi, Positive solutions of the semipositone Sturm-Liouville boundary value problem. Commun. Math. Anal. 3 (2007), No. 1, 57–67 (electronic).
    • (2007) Commun. Math. Anal. , vol.3 , Issue.1 , pp. 57-67
    • Kaufmann, E.R.1    Mboumi, E.2
  • 28
    • 38149099031 scopus 로고    scopus 로고
    • Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions
    • English transl.: Differ. Equ. 41 (2005), No. 1, 84–89
    • A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. (Russian) Differ. Uravn. 41 (2005), No. 1, 82–86; English transl.: Differ. Equ. 41 (2005), No. 1, 84–89.
    • (2005) (Russian) Differ. Uravn , vol.41 , Issue.1 , pp. 82-86
    • Kilbas, A.A.1    Marzan, S.A.2
  • 29
    • 77956684069 scopus 로고    scopus 로고
    • Theory and applications of fractional differential equations
    • Elsevier Science B.V., Amsterdam
    • A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
    • (2006) North-Holland Mathematics Studies , vol.204
    • Kilbas, A.A.1    Srivastava, H.M.2    Trujillo, J.J.3
  • 31
    • 79959412182 scopus 로고    scopus 로고
    • Basic theory of fractional differential equations
    • Theory, Methods (to appear)
    • V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations. Nonlinear Anal. Theory, Methods (to appear).
    • Nonlinear Anal.
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 32
    • 37349014877 scopus 로고    scopus 로고
    • Theory of fractional differential inequalities and applications
    • V. Lakshmikantham and A. S. Vatsala, Theory of fractional differential inequalities and applications. Commun. Appl. Anal. 11 (2007), No. 3-4, 395–402.
    • (2007) Commun. Appl. Anal. , vol.11 , Issue.3-4 , pp. 395-402
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 33
    • 72149122159 scopus 로고    scopus 로고
    • General uniqueness and monotone iterative technique for fractional differential equations
    • to appear
    • V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Letters (to appear).
    • Appl. Math. Letters
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 34
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: Some basic problems in continuum and statistical mechanics. Fractals and fractional calculus in continuum mechanics (Udine, 1996)
    • Springer, Vienna
    • F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics. Fractals and fractional calculus in continuum mechanics (Udine, 1996), 291–348, CISM Courses and Lectures, 378, Springer, Vienna, 1997.
    • (1997) CISM Courses and Lectures , vol.378 , pp. 291-348
    • Mainardi, F.1
  • 35
    • 0001044887 scopus 로고
    • Relaxation in filled polymers: A fractional calculus approach
    • F. Metzler, W. Schick, H. G. Kilian, and T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 103 (1995), 7180– 7186.
    • (1995) J. Chem. Phys. , vol.103 , pp. 7180-7186
    • Metzler, F.1    Schick, W.2    Kilian, H.G.3    Nonnenmacher, T.F.4
  • 36
    • 0003492056 scopus 로고
    • An introduction to the fractional calculus and fractional differential equations
    • John Wiley & Sons, Inc., New York
    • K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993.
    • (1993) A Wiley-Interscience Publication
    • Miller, K.S.1    Ross, B.2
  • 37
    • 34848921672 scopus 로고    scopus 로고
    • Some comparison results for integro-fractional differential inequalities
    • S. M. Momani and S. B. Hadid, Some comparison results for integro-fractional differential inequalities. J. Fract. Calc. 24 (2003), 37–44.
    • (2003) J. Fract. Calc. , vol.24 , pp. 37-44
    • Momani, S.M.1    Hadid, S.B.2
  • 38
    • 17844385541 scopus 로고    scopus 로고
    • Some analytical properties of solutions of differential equations of noninteger order
    • S. M. Momani, S. B. Hadid and Z. M. Alawenh, Some analytical properties of solutions of differential equations of noninteger order. Int. J. Math. Math. Sci. 2004, No. 13-16, 697–701.
    • (2004) Int. J. Math. Math. Sci. , vol.13-16 , pp. 697-701
    • Momani, S.M.1    Hadid, S.B.2    Alawenh, Z.M.3
  • 40
    • 0003797958 scopus 로고    scopus 로고
    • Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications
    • Academic Press, Inc., San Diego, CA
    • I. Podlubny, Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.
    • (1999) Mathematics in Science and Engineering , vol.198
    • Podlubny, I.1
  • 41
    • 0242354999 scopus 로고    scopus 로고
    • Geometric and physical interpretation of fractional integration and fractional differentiation. Dedicated to the 60th anniversary of Prof. Francesco Mainardi
    • I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Dedicated to the 60th anniversary of Prof. Francesco Mainardi. Fract. Calc. Appl. Anal. 5 (2002), No. 4, 367–386.
    • (2002) Fract. Calc. Appl. Anal. , vol.5 , Issue.4 , pp. 367-386
    • Podlubny, I.1
  • 42
    • 0036650890 scopus 로고    scopus 로고
    • Analogue realizations of fractional-order controllers. Fractional order calculus and its applications
    • I. Podlubny, I. Petráš, B. M. Vinagre, P. O’Leary, and L. Dorčák, Analogue realizations of fractional-order controllers. Fractional order calculus and its applications. Nonlinear Dynam. 29 (2002), No. 1-4, 281–296.
    • (2002) Nonlinear Dynam , vol.29 , Issue.1-4 , pp. 281-296
    • Podlubny, I.1    Petráš, I.2    Vinagre, B.M.3    O'Leary, P.4    Dorčák, L.5
  • 43
    • 0003598080 scopus 로고
    • Fractional integrals and derivatives
    • Translated from the 1987 Russian original) Gordon and Breach Science Publishers, Yverdon
    • S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives. Theory and applications. (Translated from the 1987 Russian original) Gordon and Breach Science Publishers, Yverdon, 1993.
    • (1993) Theory and Applications
    • Samko, S.G.1    Kilbas, A.A.2    Marichev, O.I.3
  • 45
    • 23844442815 scopus 로고    scopus 로고
    • Existence of fractional differential equations
    • C. Yu and G. Gao, Existence of fractional differential equations. J. Math. Anal. Appl. 310 (2005), no. 1, 26–29.
    • (2005) J. Math. Anal. Appl. , vol.310 , Issue.1 , pp. 26-29
    • Yu, C.1    Gao, G.2
  • 46
    • 33645152919 scopus 로고    scopus 로고
    • Positive solutions for boundary-value problems of nonlinear fractional differential equations
    • (elec-tronic
    • S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differential Equations 2006, No. 36, 12 pp. (elec-tronic).
    • (2006) Electron. J. Differential Equations , vol.36
    • Zhang, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.