메뉴 건너뛰기




Volumn 60, Issue 8, 2010, Pages 2253-2259

New uniqueness results of solutions for fractional differential equations with infinite delay

Author keywords

Existence and uniqueness; Fixed point theorem; Fractional integral; RiemmanLiouville fractional derivatives

Indexed keywords

EXISTENCE AND UNIQUENESS; EXISTENCE AND UNIQUENESS OF SOLUTION; EXISTENCE AND UNIQUENESS RESULTS; FIXED POINT THEOREMS; FIXED POINT THEORY; FRACTIONAL DERIVATIVES; FRACTIONAL DIFFERENTIAL EQUATIONS; FRACTIONAL INTEGRALS; INFINITE DELAY; NEUTRAL DIFFERENTIAL EQUATION;

EID: 77957359943     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2010.08.015     Document Type: Article
Times cited : (14)

References (21)
  • 1
    • 0030528474 scopus 로고    scopus 로고
    • Existence and uniqueness for a nonlinear fractional differential equation
    • D. Delboso, and L. Rodino Existence and uniqueness for a nonlinear fractional differential equation J. Math. Anal. Appl. 204 1996 609 625
    • (1996) J. Math. Anal. Appl. , vol.204 , pp. 609-625
    • Delboso, D.1    Rodino, L.2
  • 2
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • K. Diethelm, and N.J. Ford Analysis of fractional differential equations J. Math. Anal. Appl. 265 2002 229 248
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 4
    • 0028878140 scopus 로고
    • A fractional calculus approach of self-similar protein dynamics
    • W.G. Glockle, and T.F. Nonnenmacher A fractional calculus approach of self-similar protein dynamics Biophys. J. 68 1995 46 53
    • (1995) Biophys. J. , vol.68 , pp. 46-53
    • Glockle, W.G.1    Nonnenmacher, T.F.2
  • 5
    • 67349095627 scopus 로고    scopus 로고
    • A KrasnoselskiiKrein-type uniqueness result for fractional differential equations
    • V. Lakshmikantham, and S. Leela A KrasnoselskiiKrein-type uniqueness result for fractional differential equations Nonlinear Anal. 71 2009 3421 3424
    • (2009) Nonlinear Anal. , vol.71 , pp. 3421-3424
    • Lakshmikantham, V.1    Leela, S.2
  • 6
    • 70249121999 scopus 로고    scopus 로고
    • Existence of periodic solution for a nonlinear fractional differential equation
    • Mohammed Belmekki, Juan J. Nieto, and Rosana Rodrguez-Lpez Existence of periodic solution for a nonlinear fractional differential equation Bound. Value Probl. 2009 2009 Art. ID 324561
    • (2009) Bound. Value Probl. , vol.2009
    • Belmekki, M.1    Nieto, J.J.2    Rodrguez-Lpez, R.3
  • 7
    • 71649104924 scopus 로고    scopus 로고
    • Fractional order differential equations on an unbounded domain
    • A. Arara, M. Benchohra, N. Hamidi, and J.J. Nieto Fractional order differential equations on an unbounded domain Nonlinear Anal. 72 2010 580 586
    • (2010) Nonlinear Anal. , vol.72 , pp. 580-586
    • Arara, A.1    Benchohra, M.2    Hamidi, N.3    Nieto, J.J.4
  • 8
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: Some basic problems in continuum and statistical mechanics
    • F. Mainardi Fractional calculus: some basic problems in continuum and statistical mechanics A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics 1997 Springer-Verlag Wien 291 348
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 9
    • 0001044887 scopus 로고
    • Relaxation in filled polymers: A fractional calculus approach
    • F. Metzler, W. Schick, H.G. Kilian, and T.F. Nonnenmacher Relaxation in filled polymers: a fractional calculus approach J. Chem. Phys. 103 1995 7180 7186
    • (1995) J. Chem. Phys. , vol.103 , pp. 7180-7186
    • Metzler, F.1    Schick, W.2    Kilian, H.G.3    Nonnenmacher, T.F.4
  • 11
    • 17844385541 scopus 로고    scopus 로고
    • Some analytical properties of solutions of differential equations of noninteger order
    • S.M. Momani, S.B. Hadid, and Z.M. Alawenh Some analytical properties of solutions of differential equations of noninteger order Int. J. Math. Math. Sci. 2004 2004 697 701
    • (2004) Int. J. Math. Math. Sci. , vol.2004 , pp. 697-701
    • Momani, S.M.1    Hadid, S.B.2    Alawenh, Z.M.3
  • 14
    • 34250281436 scopus 로고
    • Existence and continuous dependence for differential equations with unbounded delay
    • K. Schumacher Existence and continuous dependence for differential equations with unbounded delay Arch. Ration. Mech. Anal. 64 1978 315 335
    • (1978) Arch. Ration. Mech. Anal. , vol.64 , pp. 315-335
    • Schumacher, K.1
  • 15
    • 0002914807 scopus 로고
    • An existence theorem of functional differential equations with infinite delay in a Banach space
    • J.S. Shin An existence theorem of functional differential equations with infinite delay in a Banach space Funkcial. Ekvac. 30 1987 19 29
    • (1987) Funkcial. Ekvac. , vol.30 , pp. 19-29
    • Shin, J.S.1
  • 16
    • 34848916710 scopus 로고    scopus 로고
    • Existence results for fractional order functional differential equations with infinite delay
    • M. Benchohra, J. Henderson, S.K. Ntouyas, and A. Ouahab Existence results for fractional order functional differential equations with infinite delay J. Math. Anal. Appl. 338 2008 1340 1350
    • (2008) J. Math. Anal. Appl. , vol.338 , pp. 1340-1350
    • Benchohra, M.1    Henderson, J.2    Ntouyas, S.K.3    Ouahab, A.4
  • 17
    • 59849125378 scopus 로고    scopus 로고
    • Existence and regularity of solutions for some partial functional integrodifferential equations in Banach spaces
    • Khalil Ezzinbi, Hamidou Toure, and Issa Zabsonre Existence and regularity of solutions for some partial functional integrodifferential equations in Banach spaces Nonlinear Anal. 70 2009 2761 2771
    • (2009) Nonlinear Anal. , vol.70 , pp. 2761-2771
    • Ezzinbi, K.1    Toure, H.2    Zabsonre, I.3
  • 18
    • 51349163238 scopus 로고    scopus 로고
    • On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives
    • T.A. Maraaba, F. Jarad, and D. Baleanu On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives Sci. China Ser. A 51 10 2008 1775 1786
    • (2008) Sci. China Ser. A , vol.51 , Issue.10 , pp. 1775-1786
    • Maraaba, T.A.1    Jarad, F.2    Baleanu, D.3
  • 19
    • 50849097037 scopus 로고    scopus 로고
    • Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives
    • T. Maraaba, D. Baleanu, and F. Jarad Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives J. Math. Phys. 49 8 2008 Article Number: 083507
    • (2008) J. Math. Phys. , vol.49 , Issue.8
    • Maraaba, T.1    Baleanu, D.2    Jarad, F.3
  • 20
    • 48849113990 scopus 로고    scopus 로고
    • Fractional variational principles with delay
    • D. Baleanu, T. Maaraba, and F. Jarad Fractional variational principles with delay J. Phys. A 41 31 2008 Article Number: 315403
    • (2008) J. Phys. A , vol.41 , Issue.31
    • Baleanu, D.1    Maaraba, T.2    Jarad, F.3
  • 21
    • 77950188013 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations
    • Jiqin Deng, and Lifeng Ma Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations Appl. Math. Lett. 23 2010 676 680
    • (2010) Appl. Math. Lett. , vol.23 , pp. 676-680
    • Deng, J.1    Ma, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.