-
1
-
-
46349083014
-
A tail inequality for suprema of unbounded empirical processes with applications to Markov chains
-
Adamczak, R.: A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electron. J. Probab. 13, 1000–1034 (2008)
-
(2008)
Electron. J. Probab.
, vol.13
, pp. 1000-1034
-
-
Adamczak, R.1
-
2
-
-
51249182515
-
On optimal matchings
-
Ajtai, M., Komlós, J., Tusnády, G.: On optimal matchings. Combinatorica 4, 259–264 (1984)
-
(1984)
Combinatorica
, vol.4
, pp. 259-264
-
-
Ajtai, M.1
Komlós, J.2
Tusnády, G.3
-
3
-
-
84881176604
-
Combinatorial optimization over two random point sets. Séminaire de Probabilités XLV, Lecture Notes in Mathematics 2078
-
Springer, Berlin
-
Barthe, F., Bordenave, C.: Combinatorial optimization over two random point sets. Séminaire de Probabilités XLV, Lecture Notes in Mathematics 2078, pp. 483–535, Springer, Berlin (2013)
-
(2013)
pp
, vol.483-535
-
-
Barthe, F.1
Bordenave, C.2
-
4
-
-
0001917727
-
Probability inequalities for the sum of independent random variables
-
Bennett, G.: Probability inequalities for the sum of independent random variables. J. Am. Statist. Assoc. 57, 33–45 (1962)
-
(1962)
J. Am. Statist. Assoc.
, vol.57
, pp. 33-45
-
-
Bennett, G.1
-
5
-
-
39849091360
-
On the performance of clustering in Hilbert spaces
-
Biau, G., Devroye, L., Lugosi, G.: On the performance of clustering in Hilbert spaces. IEEE Trans. Inf. Theory 54, 781–790 (2008)
-
(2008)
IEEE Trans. Inf. Theory
, vol.54
, pp. 781-790
-
-
Biau, G.1
Devroye, L.2
Lugosi, G.3
-
6
-
-
83255163943
-
Simple bounds for the convergence of empirical and occupation measures in 1-Wasserstein distance
-
Boissard, E.: Simple bounds for the convergence of empirical and occupation measures in 1-Wasserstein distance. Electron. J. Probab. 16, 2296–2333 (2011)
-
(2011)
Electron. J. Probab.
, vol.16
, pp. 2296-2333
-
-
Boissard, E.1
-
8
-
-
0042102504
-
Estimates for the distribution of sums and maxima of sums of random variables when the Cramér condition is not satisfied
-
Borovkov, A.A.: Estimates for the distribution of sums and maxima of sums of random variables when the Cramér condition is not satisfied. Sib. Math. J. 41, 811–848 (2000)
-
(2000)
Sib. Math. J.
, vol.41
, pp. 811-848
-
-
Borovkov, A.A.1
-
9
-
-
0011686524
-
A central limit theorem for stationary (Formula presented.)-mixing sequences with infinite variance
-
Bradley, R.C.: A central limit theorem for stationary $$\rho $$ρ-mixing sequences with infinite variance. Ann. Probab. 16, 313–332 (1988)
-
(1988)
Ann. Probab.
, vol.16
, pp. 313-332
-
-
Bradley, R.C.1
-
10
-
-
54049145677
-
-
1,2,3, Kendrick Press, Heber City
-
Bradly, R.C.: Introduction to Strong Mixing Conditions, vol. 1,2,3. Kendrick Press, Heber City (2007)
-
(2007)
Introduction to Strong Mixing Conditions
-
-
Bradly, R.C.1
-
11
-
-
33845889473
-
Quantitative concentration inequalities for empirical measures on non-compact spaces
-
Bolley, F., Guillin, A., Villani, C.: Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Relat. Fields 137, 541–593 (2007)
-
(2007)
Probab. Theory Relat. Fields
, vol.137
, pp. 541-593
-
-
Bolley, F.1
Guillin, A.2
Villani, C.3
-
12
-
-
1542399709
-
Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation
-
Carrillo, J.-A., Mac Cann, R., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation. Rev. Mat. Iberoam. 19, 971–1018 (2003)
-
(2003)
Rev. Mat. Iberoam.
, vol.19
, pp. 971-1018
-
-
Carrillo, J.-A.1
Mac Cann, R.2
Villani, C.3
-
13
-
-
36148968957
-
Probabilistic approach for granular media equations in the non uniformly convex case
-
Cattiaux, P., Guillin, A., Malrieu, F.: Probabilistic approach for granular media equations in the non uniformly convex case. Probab. Theory Relat. Fields 140, 19–40 (2008)
-
(2008)
Probab. Theory Relat. Fields
, vol.140
, pp. 19-40
-
-
Cattiaux, P.1
Guillin, A.2
Malrieu, F.3
-
14
-
-
33645084352
-
Quantization of probability distributions under norm-based distortion measures
-
Delattre, S., Graf, S., Luschgy, H., Pagès, G.: Quantization of probability distributions under norm-based distortion measures. Stat. Decis. 22, 261–282 (2004)
-
(2004)
Stat. Decis.
, vol.22
, pp. 261-282
-
-
Delattre, S.1
Graf, S.2
Luschgy, H.3
Pagès, G.4
-
15
-
-
84858283907
-
Asymptotic formulae for coding problems and intermediate optimization problems: a review
-
Cambridge University Press, Cambridge
-
Dereich, S.: Asymptotic formulae for coding problems and intermediate optimization problems: a review. In: Trends in Stochastic Analysis. pp. 187–232, Cambridge University Press, Cambridge (2009)
-
(2009)
Trends in Stochastic Analysis
, pp. 187-232
-
-
Dereich, S.1
-
16
-
-
84885102039
-
Constructive quantization: approximation by empirical measures
-
Dereich, S., Scheutzow, M., Schottstedt, R.: Constructive quantization: approximation by empirical measures. Ann. Inst. Henri Poincar Probab. Stat. 49, 1183–1203 (2013)
-
(2013)
Ann. Inst. Henri Poincar Probab. Stat.
, vol.49
, pp. 1183-1203
-
-
Dereich, S.1
Scheutzow, M.2
Schottstedt, R.3
-
18
-
-
4544338134
-
Transportation cost-information inequalities and applications ro random dynamical systems and diffusions
-
Djellout, H., Guillin, A., Wu, L.: Transportation cost-information inequalities and applications ro random dynamical systems and diffusions. Ann. Probab. 32, 2702–2732 (2004)
-
(2004)
Ann. Probab.
, vol.32
, pp. 2702-2732
-
-
Djellout, H.1
Guillin, A.2
Wu, L.3
-
19
-
-
0041609322
-
Asymptotics for transportation cost in high dimensions
-
Dobrić, V., Yukich, J.E.: Asymptotics for transportation cost in high dimensions. J. Theor. Probab. 8, 97–118 (1995)
-
(1995)
J. Theor. Probab.
, vol.8
, pp. 97-118
-
-
Dobrić, V.1
Yukich, J.E.2
-
21
-
-
0000421687
-
Central limit theorems for empirical measures
-
Dudley, R.M.: Central limit theorems for empirical measures. Ann. Probab. 6, 899–929 (1978)
-
(1978)
Ann. Probab.
, vol.6
, pp. 899-929
-
-
Dudley, R.M.1
-
23
-
-
0001039212
-
Probability inequalities for sums of independent random variables
-
Fuk, D.H., Nagaev, S.V.: Probability inequalities for sums of independent random variables. Theory Probab. Appl. 16, 660–675 (1971)
-
(1971)
Theory Probab. Appl.
, vol.16
, pp. 660-675
-
-
Fuk, D.H.1
Nagaev, S.V.2
-
24
-
-
33745038936
-
Integral criteria for transportation cost inequalities
-
Gozlan, N.: Integral criteria for transportation cost inequalities. Electron. Commun. Probab. 11, 64–77 (2006)
-
(2006)
Electron. Commun. Probab.
, vol.11
, pp. 64-77
-
-
Gozlan, N.1
-
25
-
-
43949158720
-
Mean rates of convergence of empirical measures in the Wasserstein metric
-
Horowitz, J., Karandikar, R.L.: Mean rates of convergence of empirical measures in the Wasserstein metric. J. Comput. Appl. Math. 55, 261–273 (1994)
-
(1994)
J. Comput. Appl. Math.
, vol.55
, pp. 261-273
-
-
Horowitz, J.1
Karandikar, R.L.2
-
26
-
-
80054866541
-
(Formula presented.)-Quantization and clustering in Banach spaces
-
Laloë, T.: $$L_1$$L1-Quantization and clustering in Banach spaces. Math. Method Stat. 19, 136–150 (2009)
-
(2009)
Math. Method Stat.
, vol.19
, pp. 136-150
-
-
Laloë, T.1
-
28
-
-
21144445368
-
Convergence to equlibrium for granular media equations
-
Malrieu, F.: Convergence to equlibrium for granular media equations. Ann. Appl. Probab. 13, 540–560 (2003)
-
(2003)
Ann. Appl. Probab.
, vol.13
, pp. 540-560
-
-
Malrieu, F.1
-
30
-
-
84878996168
-
Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples
-
Merlevède, F., Peligrad, M.: Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples. Ann. Probab. 41, 914–960 (2013)
-
(2013)
Ann. Probab.
, vol.41
, pp. 914-960
-
-
Merlevède, F.1
Peligrad, M.2
-
31
-
-
80355128995
-
A Bernstein type inequality and moderate deviations for weakly dependent sequences
-
Merlevède, F., Peligrad, M., Rio, E.: A Bernstein type inequality and moderate deviations for weakly dependent sequences. Probab. Theory Relat. Fields 151, 435–474 (2011)
-
(2011)
Probab. Theory Relat. Fields
, vol.151
, pp. 435-474
-
-
Merlevède, F.1
Peligrad, M.2
Rio, E.3
-
32
-
-
84879420862
-
Kac’s programm in kinetic theory
-
Mischler, S., Mouhot, C.: Kac’s programm in kinetic theory. Invent. Math. 193, 1–147 (2013)
-
(2013)
Invent. Math.
, vol.193
, pp. 1-147
-
-
Mischler, S.1
Mouhot, C.2
-
33
-
-
84893582379
-
Optimal Delaunay and Voronoi quantization schemes for pricing American style options
-
Carmona R, Hu P, Del Moral P, Oudjane N, (eds), Springer, Berlin
-
Pagès, G., Wilbertz, B.: Optimal Delaunay and Voronoi quantization schemes for pricing American style options. In: Carmona, R., Hu, P., Del Moral, P., Oudjane, N. (eds.) Numerical Methods in Finance, pp. 171–217. Springer, Berlin (2012)
-
(2012)
Numerical Methods in Finance
, pp. 171-217
-
-
Pagès, G.1
Wilbertz, B.2
-
34
-
-
84939291185
-
-
Perrin, D.: Une variante de la formule de Stirling
-
Perrin, D.: Une variante de la formule de Stirling. http://www.math.u-psud.fr/~perrin/CAPES/analyse/Suites/Stirling
-
-
-
-
36
-
-
0013091695
-
Shift-coupling and convergence rates of ergodic averages
-
Roberts, G., Rosenthal, J.-S.: Shift-coupling and convergence rates of ergodic averages. Commun. Stat. Stoch. Models 13, 147–165 (1996)
-
(1996)
Commun. Stat. Stoch. Models
, vol.13
, pp. 147-165
-
-
Roberts, G.1
Rosenthal, J.-S.2
-
37
-
-
10644251108
-
Théorie asymptotique des processus aléatoires faiblement dépendants
-
Springer, Paris
-
Rio, E.: Théorie asymptotique des processus aléatoires faiblement dépendants, Mathématiques et Applications 31. Springer, Paris (2000)
-
(2000)
Mathématiques et Applications
, vol.31
-
-
Rio, E.1
-
38
-
-
0013333793
-
Matching random samples in many dimensions
-
Talagrand, M.: Matching random samples in many dimensions. Ann. Appl. Probab. 2, 846–856 (1992)
-
(1992)
Ann. Appl. Probab.
, vol.2
, pp. 846-856
-
-
Talagrand, M.1
-
39
-
-
0010275812
-
The transportation cost from the uniform measure to the empirical measure in dimension (Formula presented.)
-
Talagrand, M.: The transportation cost from the uniform measure to the empirical measure in dimension $$\ge 3$$≥3. Ann. Probab. 22, 919–959 (1994)
-
(1994)
Ann. Probab.
, vol.22
, pp. 919-959
-
-
Talagrand, M.1
|