-
2
-
-
85069677529
-
Resolving the Energy Levels of a Nanomechanical Oscillator
-
Arrangoiz-Arriola, Patricio, E. Alex, Wollack, Zhaoyou, Wang, Marek, Pechal, Wentao, Jiang, Timothy P., McKenna, Jeremy D., Witmer, Raphaël, Van Laer, and Amir H., Safavi-Naeini. 2019. “ Resolving the Energy Levels of a Nanomechanical Oscillator.” Nature 571 (7766): 537–540.
-
(2019)
Nature
, vol.571
, Issue.7766
, pp. 537-540
-
-
Arrangoiz-Arriola, P.1
Wollack, E.A.2
Wang, Z.3
Pechal, M.4
Jiang, W.5
McKenna, T.P.6
Witmer, J.D.7
Van Laer, R.8
Safavi-Naeini, A.H.9
-
3
-
-
0001872697
-
The Group-theoretic Description of 12-fold and Microtonal Pitch Systems
-
Balzano, Gerald J., 1980. “ The Group-theoretic Description of 12-fold and Microtonal Pitch Systems.” Computer Music Journal 4 (4): 66–84.
-
(1980)
Computer Music Journal
, vol.4
, Issue.4
, pp. 66-84
-
-
Balzano, G.J.1
-
4
-
-
85067847200
-
-
Visualizing Temperaments: Squaring the Circle? edited by M. Montiel, F. Gomez-Martin, and O. A. Agustín-Aquino, 333–337. Cham: Springer
-
Baroin, Gilles, and André, Calvet. 2019. “Visualizing Temperaments: Squaring the Circle?” In Mathematics and Computation in Music, edited by M. Montiel, F. Gomez-Martin, and O. A. Agustín-Aquino, 333–337. Cham: Springer.
-
(2019)
Mathematics and Computation in Music
-
-
Baroin, G.1
Calvet, A.2
-
5
-
-
85011999948
-
-
Toward a Gauge Theory of Musical Forces. 10106 of LNCS, edited by J. Acacio de Barros, Bob Coecke, and Emmanuel M. Pothos, 99–111. Cham: Springer
-
beim Graben, Peter, and Reinhard, Blutner. 2017. “Toward a Gauge Theory of Musical Forces.” In Quantum Interaction. 10th International Conference (QI 2016), Vol. 10106 of LNCS, edited by J. Acacio de Barros, Bob Coecke, and Emmanuel M. Pothos, 99–111. Cham: Springer.
-
(2017)
Quantum Interaction. 10th International Conference (QI 2016)LNCS
-
-
beim Graben, P.1
Blutner, R.2
-
7
-
-
80655123402
-
Taking a Broader View: Abstraction and Idealization
-
Blutner, Reinhard., 2011. “ Taking a Broader View: Abstraction and Idealization.” Theoretical Linguistics 37 (1-2): 27–35.
-
(2011)
Theoretical Linguistics
, vol.37
, Issue.1-2
, pp. 27-35
-
-
Blutner, R.1
-
8
-
-
84938520513
-
Modelling Tonal Attraction: Tonal Hierarchies, Interval Cycles, and Quantum Probabilities
-
Blutner, Reinhard., 2017. “ Modelling Tonal Attraction: Tonal Hierarchies, Interval Cycles, and Quantum Probabilities.” Soft Computing 21 (6): 1401–1419.
-
(2017)
Soft Computing
, vol.21
, Issue.6
, pp. 1401-1419
-
-
Blutner, R.1
-
9
-
-
84944909130
-
Quantum Cognition and Bounded Rationality
-
Blutner, Reinhard, and Peter, beim Graben. 2016. “ Quantum Cognition and Bounded Rationality.” Synthese 193 (10): 3239–3291.
-
(2016)
Synthese
, vol.193
, Issue.10
, pp. 3239-3291
-
-
Blutner, R.1
beim Graben, P.2
-
11
-
-
85027401097
-
The Nature and Nurture of Musical Consonance
-
Bowling, Daniel L., Marisa, Hoeschele, Kamraan Z., Gill, and W. Tecumseh, Fitch. 2017. “ The Nature and Nurture of Musical Consonance.” Music Perception: An Interdisciplinary Journal 35 (1): 118–121.
-
(2017)
Music Perception: An Interdisciplinary Journal
, vol.35
, Issue.1
, pp. 118-121
-
-
Bowling, D.L.1
Hoeschele, M.2
Gill, K.Z.3
Fitch, W.T.4
-
12
-
-
85085968036
-
-
The Quantum Theory of Sound. edited by T. Brennan, 3–1 to 3–17. San Rafael, CA: Morgan and Claypool
-
Brennan, Thomas., 2016. “The Quantum Theory of Sound.” In Understanding Sonoluminescence, edited by T. Brennan, 3–1 to 3–17. San Rafael, CA: Morgan and Claypool.
-
(2016)
Understanding Sonoluminescence
-
-
Brennan, T.1
-
13
-
-
84876546718
-
Universals in the World's Musics
-
Brown, Steven, and Joseph, Jordania. 2013. “ Universals in the World's Musics.” Psychology of Music 41 (2): 229–248.
-
(2013)
Psychology of Music
, vol.41
, Issue.2
, pp. 229-248
-
-
Brown, S.1
Jordania, J.2
-
14
-
-
0003661345
-
-
Intervals, Scales, and Tuning. edited by Diana Deutsch, 2nd ed., 215–264. San Diego, CA: Academic Press
-
Burns, Edward M., 1999. “Intervals, Scales, and Tuning.” In The Psychology of Music, edited by Diana Deutsch, 2nd ed., 215–264. San Diego, CA: Academic Press.
-
(1999)
The Psychology of Music
-
-
Burns, E.M.1
-
16
-
-
85029749529
-
Quantum Acoustics with Superconducting Qubits
-
Chu, Yiwen, Prashanta, Kharel, William H., Renninger, Luke D., Burkhart, Luigi, Frunzio, Peter T., Rakich, and Robert J., Schoelkopf. 2017. “ Quantum Acoustics with Superconducting Qubits.” Science 358 (6360): 199–202.
-
(2017)
Science
, vol.358
, Issue.6360
, pp. 199-202
-
-
Chu, Y.1
Kharel, P.2
Renninger, W.H.3
Burkhart, L.D.4
Frunzio, L.5
Rakich, P.T.6
Schoelkopf, R.J.7
-
17
-
-
79959600990
-
Modes, the Height-width Duality, and Handschin's Tone Character
-
Clampitt, David, and Thomas, Noll. 2011. “ Modes, the Height-width Duality, and Handschin's Tone Character.” Music Theory Online 17 (1): 1–149.
-
(2011)
Music Theory Online
, vol.17
, Issue.1
, pp. 1-149
-
-
Clampitt, D.1
Noll, T.2
-
18
-
-
67650489756
-
Musical Actions of Dihedral Groups
-
Crans, Alissa S., Thomas M., Fiore, and Ramon, Satyendra. 2009. “ Musical Actions of Dihedral Groups.” The American Mathematical Monthly 116 (6): 479–495.
-
(2009)
The American Mathematical Monthly
, vol.116
, Issue.6
, pp. 479-495
-
-
Crans, A.S.1
Fiore, T.M.2
Satyendra, R.3
-
19
-
-
84947223651
-
Quantum Information, Cognition and Music
-
Dalla Chiara, Maria L., Roberto, Giuntini, Roberto, Leporini, Eleonora, Negri, and Giuseppe, Sergioli. 2015. “ Quantum Information, Cognition and Music.” Frontiers in Psychology 6, 1583.
-
(2015)
Frontiers in Psychology
, vol.6
, pp. 1583
-
-
Dalla Chiara, M.L.1
Giuntini, R.2
Leporini, R.3
Negri, E.4
Sergioli, G.5
-
20
-
-
84946136075
-
A Quantum-like Semantic Analysis of Ambiguity in Music
-
Dalla Chiara, Maria L., Roberto, Giuntini, Antonio, Luciani, and Eleonora, Negri. 2017. “ A Quantum-like Semantic Analysis of Ambiguity in Music.” Soft Computing 21 (6): 1473–1481.
-
(2017)
Soft Computing
, vol.21
, Issue.6
, pp. 1473-1481
-
-
Dalla Chiara, M.L.1
Giuntini, R.2
Luciani, A.3
Negri, E.4
-
21
-
-
43249146238
-
Continued Fractions, Best Measurements, and Musical Scales and Intervals
-
Douthett, Jack, and Richard, Krantz. 2007. “ Continued Fractions, Best Measurements, and Musical Scales and Intervals.” Journal of Mathematics and Music 1 (1): 47–70.
-
(2007)
Journal of Mathematics and Music
, vol.1
, Issue.1
, pp. 47-70
-
-
Douthett, J.1
Krantz, R.2
-
22
-
-
33745259862
-
The Biology and Evolution of Music: A Comparative Perspective
-
Fitch, W. Tecumseh., 2006. “ The Biology and Evolution of Music: A Comparative Perspective.” Cognition 100 (1): 173–215.
-
(2006)
Cognition
, vol.100
, Issue.1
, pp. 173-215
-
-
Fitch, W.T.1
-
23
-
-
5644237214
-
Acoustical Quanta and the Theory of Hearing
-
Gabor, Dennis., 1947. “ Acoustical Quanta and the Theory of Hearing.” Nature 159 (4044): 591–594.
-
(1947)
Nature
, vol.159
, Issue.4044
, pp. 591-594
-
-
Gabor, D.1
-
24
-
-
77954056827
-
A Biological Rationale for Musical Scales
-
Gill, Kamraan Z., and Dale, Purves. 2009. “ A Biological Rationale for Musical Scales.” PLoS One 4 (12): 1–9.
-
(2009)
PLoS One
, vol.4
, Issue.12
, pp. 1-9
-
-
Gill, K.Z.1
Purves, D.2
-
27
-
-
36149021109
-
Analytic Properties of Bloch Waves and Wannier Functions
-
Kohn, Walter., 1959. “ Analytic Properties of Bloch Waves and Wannier Functions.” Physical Review 115 (4): 809–821.
-
(1959)
Physical Review
, vol.115
, Issue.4
, pp. 809-821
-
-
Kohn, W.1
-
28
-
-
0040861274
-
Das Eigenwertproblem Im Eindimensionalen Periodischen Kraftfelde
-
Kramers, Hendrik A., 1935. “ Das Eigenwertproblem Im Eindimensionalen Periodischen Kraftfelde.” Physica 2 (1): 483–490.
-
(1935)
Physica
, vol.2
, Issue.1
, pp. 483-490
-
-
Kramers, H.A.1
-
29
-
-
0028308871
-
A Measure of the Reasonableness of Equal-tempered Musical Scales
-
Krantz, Richard, and Jack, Douthett. 1994. “ A Measure of the Reasonableness of Equal-tempered Musical Scales.” The Journal of the Acoustical Society of America 95 (6): 3642–3650.
-
(1994)
The Journal of the Acoustical Society of America
, vol.95
, Issue.6
, pp. 3642-3650
-
-
Krantz, R.1
Douthett, J.2
-
30
-
-
0020161395
-
Tracing the Dynamic Changes in Perceived Tonal Organization in a Spatial Representation of Musical Keys
-
Krumhansl, Carol L., and Edward J., Kessler. 1982. “ Tracing the Dynamic Changes in Perceived Tonal Organization in a Spatial Representation of Musical Keys.” Psychological Review 89 (4): 334–368.
-
(1982)
Psychological Review
, vol.89
, Issue.4
, pp. 334-368
-
-
Krumhansl, C.L.1
Kessler, E.J.2
-
32
-
-
0004181088
-
-
NewYork: Oxford University Press
-
Lerdahl, Fred., 2001. Tonal Pitch Space. NewYork: Oxford University Press.
-
(2001)
Tonal Pitch Space
-
-
Lerdahl, F.1
-
36
-
-
85088608338
-
Riemanns Tonvorstellungen Oder Hornbostels Melodiegestalten?
-
Maier, Franz M., 2020. “ Riemanns Tonvorstellungen Oder Hornbostels Melodiegestalten? ” Archiv für Musikwissenschaft 76 (4): 268–279.
-
(2020)
Archiv für Musikwissenschaft
, vol.76
, Issue.4
, pp. 268-279
-
-
Maier, F.M.1
-
37
-
-
85052293402
-
Introduction to Gestural Similarity in Music. An Application of Category Theory to the Orchestra
-
Mannone, Maria., 2018. “ Introduction to Gestural Similarity in Music. An Application of Category Theory to the Orchestra.” Journal of Mathematics and Music 12 (3): 63–87.
-
(2018)
Journal of Mathematics and Music
, vol.12
, Issue.3
, pp. 63-87
-
-
Mannone, M.1
-
38
-
-
85085980087
-
-
Characterization of the Degree of Musical Non-Markovianity
-
Mannone, Maria, and Giuseppe, Compagno. 2014. “Characterization of the Degree of Musical Non-Markovianity.” https://arxiv.org/abs/1306.0229.
-
(2014)
-
-
Mannone, M.1
Compagno, G.2
-
39
-
-
85067836601
-
Categories, Musical Instruments, and Drawings: A Unification Dream
-
Mannone, Maria, and Favali, Federico. 2019. Categories, Musical Instruments, and Drawings: A Unification Dream, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 59–72. 10.1007/978-3-030-21392-3_5
-
(2019)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.11502
, pp. 59-72
-
-
Mannone, M.1
Favali, F.2
-
40
-
-
85081587457
-
Quantum GestART: identifying and applying correlations between mathematics, art, and perceptual organization
-
Mannone, Maria, Federico, Favali, Balandino, Di Donato, and Luca, Turchet. 2020. Quantum GestART: identifying and applying correlations between mathematics, art, and perceptual organization, Journal of Mathematics and Music, 10.1080/17459737.2020.1726691
-
(2020)
Journal of Mathematics and Music
-
-
Mannone, M.1
Favali, F.2
Di Donato, B.3
Turchet, L.4
-
41
-
-
85088609652
-
Dense Geometry of Music and Visual Arts: Vanishing Points, Continuous Tonnetz, and Theremin Performance
-
Mannone, Maria, Irene, Iaccarino, and Rosanna, Iembo. 2018. “ Dense Geometry of Music and Visual Arts: Vanishing Points, Continuous Tonnetz, and Theremin Performance.” The STEAM Journal 3 (2): 15.
-
(2018)
The STEAM Journal
, vol.3
, Issue.2
, pp. 15
-
-
Mannone, M.1
Iaccarino, I.2
Iembo, R.3
-
43
-
-
85067851145
-
-
ComMuteTowards A Computational Musical Theory of Everything. edited by Mariana Montiel, Francisco Gómez-Martin, and Octavio A. Agustín-Aquino, 21–30. Cham: Springer
-
Mazzola, Guerino., 2019. “ComMute–Towards A Computational Musical Theory of Everything.” In Mathematics and Computation in Music, edited by Mariana Montiel, Francisco Gómez-Martin, and Octavio A. Agustín-Aquino, 21–30. Cham: Springer.
-
(2019)
Mathematics and Computation in Music
-
-
Mazzola, G.1
-
44
-
-
43249139253
-
Diagrams, Gestures and Formulae in Music
-
Mazzola, Guerino, and Moreno, Andreatta. 2007. “ Diagrams, Gestures and Formulae in Music.” Journal of Mathematics and Music 1 (1): 23–46.
-
(2007)
Journal of Mathematics and Music
, vol.1
, Issue.1
, pp. 23-46
-
-
Mazzola, G.1
Andreatta, M.2
-
45
-
-
33745286834
-
The Origins of Music: Innateness, Uniqueness, and Evolution
-
McDermott, Josh, and Marc, Hauser. 2005. “ The Origins of Music: Innateness, Uniqueness, and Evolution.” Music Perception: An Interdisciplinary Journal 23 (1): 29–59.
-
(2005)
Music Perception: An Interdisciplinary Journal
, vol.23
, Issue.1
, pp. 29-59
-
-
McDermott, J.1
Hauser, M.2
-
46
-
-
79957948253
-
Modelling the Similarity of Pitch Collections with Expectation Tensors
-
Milne, Andrew J., William A., Sethares, Robin, Laney, and David B., Sharp. 2011. “ Modelling the Similarity of Pitch Collections with Expectation Tensors.” Journal of Mathematics and Music 5 (1): 1–20.
-
(2011)
Journal of Mathematics and Music
, vol.5
, Issue.1
, pp. 1-20
-
-
Milne, A.J.1
Sethares, W.A.2
Laney, R.3
Sharp, D.B.4
-
47
-
-
77955733182
-
Musical Intervals and Special Linear Transformations
-
Noll, Thomas., 2007. “ Musical Intervals and Special Linear Transformations.” Journal of Mathematics and Music 1 (2): 121–137.
-
(2007)
Journal of Mathematics and Music
, vol.1
, Issue.2
, pp. 121-137
-
-
Noll, T.1
-
48
-
-
85085964200
-
-
Phonon. Britannia
-
Perkowitz, Sidney., 2008. “Phonon.” Britannia, https://www.britannica.com/science/phonon.
-
(2008)
-
-
Perkowitz, S.1
-
49
-
-
84877994025
-
Can Quantum Probability Provide a New Direction for Cognitive Modeling?
-
Pothos, Emmanuel M., and Jerome S., Busemeyer. 2013. “ Can Quantum Probability Provide a New Direction for Cognitive Modeling? ” Behavioral and Brain Sciences 36 (3): 255–274.
-
(2013)
Behavioral and Brain Sciences
, vol.36
, Issue.3
, pp. 255-274
-
-
Pothos, E.M.1
Busemeyer, J.S.2
-
50
-
-
84885476590
-
A Quantum Geometric Model of Similarity
-
Pothos, Emmanuel M., Jerome R., Busemeyer, and Jennifer S., Trueblood. 2013. “ A Quantum Geometric Model of Similarity.” Psychological Review 120 (3): 679–696.
-
(2013)
Psychological Review
, vol.120
, Issue.3
, pp. 679-696
-
-
Pothos, E.M.1
Busemeyer, J.R.2
Trueblood, J.S.3
-
51
-
-
84939227167
-
Quantum Music
-
Putz, Volkmar, and Karl, Svozil. 2017. “ Quantum Music.” Soft Computing 21 (6): 1467–1471.
-
(2017)
Soft Computing
, vol.21
, Issue.6
, pp. 1467-1471
-
-
Putz, V.1
Svozil, K.2
-
53
-
-
0004300364
-
-
Berkeley (CA): University of California Press
-
Schönberg, Arnold., 1978. Theory of Harmony. Berkeley (CA): University of California Press.
-
(1978)
Theory of Harmony
-
-
Schönberg, A.1
-
54
-
-
0001149560
-
Quantisierung Als Eigenwertproblem–Erste Mitteilung
-
Schrödinger, Erwin., 1926. “ Quantisierung Als Eigenwertproblem–Erste Mitteilung.” Annalen der Physik 79, 361–376.
-
(1926)
Annalen der Physik
, vol.79
, pp. 361-376
-
-
Schrödinger, E.1
-
55
-
-
0032360181
-
Physics of the Theremin
-
Skeldon, Kenneth D., Lindsay M., Reid, Viviene, McInally, Brendan, Dougan, and Craig, Fulton. 1998. “ Physics of the Theremin.” American Journal of Physics 66 (11): 945–955.
-
(1998)
American Journal of Physics
, vol.66
, Issue.11
, pp. 945-955
-
-
Skeldon, K.D.1
Reid, L.M.2
McInally, V.3
Dougan, B.4
Fulton, C.5
-
57
-
-
84965798892
-
Universal Music?
-
von Hoerner, Sebastian., 1974. “ Universal Music? ” Psychology of Music 2 (2): 18–28.
-
(1974)
Psychology of Music
, vol.2
, Issue.2
, pp. 18-28
-
-
von Hoerner, S.1
-
58
-
-
85060998414
-
Octave Equivalence Perception is Not Linked to Vocal Mimicry: Budgerigars Fail Standardized Operant Tests for Octave Equivalence
-
Wagner, Bernhard, Dan C., Mann, Shahrzad, Afroozeh, Gabriel, Staubmann, and Marisa, Hoeschele. 2019. “ Octave Equivalence Perception is Not Linked to Vocal Mimicry: Budgerigars Fail Standardized Operant Tests for Octave Equivalence.” Behaviour 156 (5-8): 479–504.
-
(2019)
Behaviour
, vol.156
, Issue.5-8
, pp. 479-504
-
-
Wagner, B.1
Mann, D.C.2
Afroozeh, S.3
Staubmann, G.4
Hoeschele, M.5
-
59
-
-
0003438451
-
-
Laws of Organization Perceptual Forms edited by D. Willis Ellis, 71–88. London: Kegan Paul, Trench, Trubner
-
Wertheimer, Max., 1938. “Laws of Organization in Perceptual Forms”. In A Source Book of Gestalt Psychology, edited by D. Willis Ellis, 71–88. London: Kegan Paul, Trench, Trubner.
-
(1938)
A Source Book of Gestalt Psychology
-
-
Wertheimer, M.1
-
60
-
-
77952165257
-
Modelling Tonal Attraction Between Adjacent Musical Elements
-
Woolhouse, Matthew., 2009. “ Modelling Tonal Attraction Between Adjacent Musical Elements.” Journal of New Music Research 38 (4): 357–379.
-
(2009)
Journal of New Music Research
, vol.38
, Issue.4
, pp. 357-379
-
-
Woolhouse, M.1
-
61
-
-
77952187772
-
Using Interval Cycles to Model Krumhansl's Tonal Hierarchies
-
Woolhouse, Matthew, and Ian, Cross. 2010. “ Using Interval Cycles to Model Krumhansl's Tonal Hierarchies.” Music Theory Spectrum 32 (1): 60–78.
-
(2010)
Music Theory Spectrum
, vol.32
, Issue.1
, pp. 60-78
-
-
Woolhouse, M.1
Cross, I.2
|