-
2
-
-
84867117736
-
How to grade a test without knowing the answers - A bayesian graphical model for adaptive crowdsourcing and aptitude testing
-
Y. Bachrach, T. Minka, J. Guiver, and T. Graepel. How To Grade a Test Without Knowing the Answers - A Bayesian Graphical Model for Adaptive Crowdsourcing and Aptitude Testing. In The 29th Annual International Conference on Machine Learning, ICML’12, 2012.
-
(2012)
The 29th Annual International Conference on Machine Learning, ICML’12
-
-
Bachrach, Y.1
Minka, T.2
Guiver, J.3
Graepel, T.4
-
3
-
-
0003485583
-
The basics of item response theory
-
University of Maryland, College Park
-
F. Baker. The basics of item response theory. ERIC Clearinghouse on Assessment and Evaluation, University of Maryland, College Park, 2001.
-
(2001)
ERIC Clearinghouse on Assessment and Evaluation
-
-
Baker, F.1
-
4
-
-
0002149599
-
Test theory without an answer key
-
W. H. Batchelder and A. K. Romney. Test theory without an answer key. Psychometrika, 53:71–92, 1988.
-
(1988)
Psychometrika
, vol.53
, pp. 71-92
-
-
Batchelder, W.H.1
Romney, A.K.2
-
7
-
-
0021518209
-
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
-
S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE PAMI, (6):721–741, 1984.
-
(1984)
IEEE PAMI
, Issue.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
9
-
-
79959318461
-
Peering inside peer review with bayesian models
-
Berlin, Heidelberg, Springer-Verlag
-
I. M. Goldin and K. D. Ashley. Peering inside peer review with bayesian models. In Proceedings of the 15th international conference on Artificial intelligence in education, AIED’11, pages 90–97, Berlin, Heidelberg, 2011. Springer-Verlag.
-
(2011)
Proceedings of the 15th International Conference on Artificial Intelligence in Education, AIED’11
, pp. 90-97
-
-
Goldin, I.M.1
Ashley, K.D.2
-
10
-
-
0002799653
-
On bayesian analysis of multi-rater ordinal data: An application to automated essay grading
-
V. E. Johnson. On bayesian analysis of multi-rater ordinal data: An application to automated essay grading. Journal of the American Statistical Association, 91:42–51, 1996.
-
(1996)
Journal of the American Statistical Association
, vol.91
, pp. 42-51
-
-
Johnson, V.E.1
-
11
-
-
84899442104
-
Combining human and machine intelligence in large-scale crowdsourcing
-
E. Kamar, S. Hacker, and E. Horvitz. Combining human and machine intelligence in large-scale crowdsourcing. In In AAMAS, 2012.
-
(2012)
AAMAS
-
-
Kamar, E.1
Hacker, S.2
Horvitz, E.3
-
12
-
-
0346957341
-
Markov chain estimation for test theory without an answer key
-
G. Karabatsos and W. Batchelder. Markov chain estimation for test theory without an answer key. Psychometrika, 68(3):373–389, 2003.
-
(2003)
Psychometrika
, vol.68
, Issue.3
, pp. 373-389
-
-
Karabatsos, G.1
Batchelder, W.2
-
13
-
-
85080712731
-
Scaling self and peer assessment to the global design classroom
-
C. Kulkarni, K. Pang-Wei, H. Le, D. Chia, K. Papadopoulos, D. Koller, and S. R. Klemmer. Scaling self and peer assessment to the global design classroom. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2013.
-
(2013)
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
-
-
Kulkarni, C.1
Pang-Wei, K.2
Le, H.3
Chia, D.4
Papadopoulos, K.5
Koller, D.6
Klemmer, S.R.7
-
14
-
-
0013354585
-
Bayes nets in educational assessment: Where the numbers come from
-
Morgan Kaufmann Publishers Inc
-
R. J. Mislevy, R. G. Almond, D. Yan, and L. S. Steinberg. Bayes nets in educational assessment: Where the numbers come from. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence, pages 437–446. Morgan Kaufmann Publishers Inc., 1999.
-
(1999)
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
, pp. 437-446
-
-
Mislevy, R.J.1
Almond, R.G.2
Yan, D.3
Steinberg, L.S.4
-
16
-
-
77953479676
-
Semi-parametric analysis of multi-rater data
-
July
-
S. Rogers, M. Girolami, and T. Polajnar. Semi-parametric analysis of multi-rater data. Statistics and Computing, 20(3):317–334, July 2010.
-
(2010)
Statistics and Computing
, vol.20
, Issue.3
, pp. 317-334
-
-
Rogers, S.1
Girolami, M.2
Polajnar, T.3
-
18
-
-
33645065584
-
The impact of self-and peer-grading on student learning
-
P. M. Sadler and E. Good. The impact of self-and peer-grading on student learning. Educational assessment, 11(1):1–31, 2006.
-
(2006)
Educational Assessment
, vol.11
, Issue.1
, pp. 1-31
-
-
Sadler, P.M.1
Good, E.2
-
19
-
-
77951951247
-
Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
-
MIT Press
-
J. Whitehill, P. Ruvolo, T. fan Wu, J. Bergsma, and J. Movellan. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In Advances in Neural Information Processing Systems 22, pages 2035–2043. MIT Press, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 2035-2043
-
-
Whitehill, J.1
Ruvolo, P.2
Fan Wu, T.3
Bergsma, J.4
Movellan, J.5
|