메뉴 건너뛰기




Volumn 7895 LNAI, Issue PART 2, 2013, Pages 385-396

Opponent modelling by sequence prediction and lookahead in two-player games

Author keywords

Game Theory; Lookahead; Multi Agent Learning; Opponent Modelling; Reinforcement Learning; Sequence Prediction

Indexed keywords

ACTION SELECTION; HARD PROBLEMS; LEARNING SPEED; LOOKAHEAD; MEMORY LENGTH; MULTI-AGENT LEARNING; SEQUENCE PREDICTION; TWO-PLAYER GAMES;

EID: 84884369341     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-38610-7_36     Document Type: Conference Paper
Times cited : (12)

References (20)
  • 4
    • 29344453415 scopus 로고    scopus 로고
    • Non-stationary policy learning in 2-player zero sum games
    • Jensen, B., Gini, S.: Non-stationary policy learning in 2-player zero sum games. In: Proc. of 20th Int. Conf. on AI, pp. 789-794 (2005)
    • (2005) Proc. Of 20th Int. Conf. On AI , pp. 789-794
    • Jensen, B.1    Gini, S.2
  • 6
    • 0000115094 scopus 로고
    • Generation of random sequences by human subjects: Cognitive operations or psychological process?
    • Treisman, Faulkner: Generation of random sequences by human subjects: Cognitive operations or psychological process? JEP: General 116, 337-355 (1987)
    • (1987) JEP: General , vol.116 , pp. 337-355
    • Treisman, F.1
  • 7
    • 0001980141 scopus 로고
    • The evolution of strategies in the iterated prisoner's dilemma
    • Morgan Kaufmann
    • Axelrod, R.: The evolution of strategies in the iterated prisoner's dilemma. In: Genetic Algorithms and Simulated Annealing, pp. 32-41. Morgan Kaufmann (1987)
    • (1987) Genetic Algorithms and Simulated Annealing , pp. 32-41
    • Axelrod, R.1
  • 8
    • 85149834820 scopus 로고
    • Markov games as a framework for multi-agent reinforcement learning
    • Morgan Kaufmann
    • Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In: 11th Proc. of ICML, pp. 157-163. Morgan Kaufmann (1994)
    • (1994) 11th Proc. Of ICML , pp. 157-163
    • Littman, M.L.1
  • 9
    • 84866071369 scopus 로고    scopus 로고
    • Context Prediction in Pervasive Computing Systems
    • Burstein,F. (ed.) Springer
    • Boytsov, Zaslavsky: Context Prediction in Pervasive Computing Systems. In: Burstein,F. (ed.) Supporting Real Time Decision-Making, pp. 35-63. Springer (2011)
    • (2011) Supporting Real Time Decision-Making , pp. 35-63
    • Boytsov, Z.1
  • 12
    • 0025516650 scopus 로고
    • Implementing the ppm data compression scheme
    • Moffat, A.: Implementing the ppm data compression scheme. IEEE Transactions on Communications 38, 1917-1921 (1990)
    • (1990) IEEE Transactions on Communications , vol.38 , pp. 1917-1921
    • Moffat, A.1
  • 13
    • 24944489873 scopus 로고    scopus 로고
    • Activelezi: An incremental parsing algorithm for sequential prediction
    • Gopalratnam, K., Cook, D.J.: Activelezi: An incremental parsing algorithm for sequential prediction. In: 16th Int. FLAIRS Conf., pp. 38-42 (2003)
    • (2003) 16th Int. FLAIRS Conf. , pp. 38-42
    • Gopalratnam, K.1    Cook, D.J.2
  • 14
    • 0028404750 scopus 로고
    • Discrete sequence prediction and its applications
    • Laird, P., Saul, R.: Discrete sequence prediction and its applications. Machine Learning 15, 43-68 (1994)
    • (1994) Machine Learning , vol.15 , pp. 43-68
    • Laird, P.1    Saul, R.2
  • 16
    • 0041965934 scopus 로고    scopus 로고
    • Learning precise timing with lstm recurrent networks
    • Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with lstm recurrent networks. JMLR 3, 115-143 (2002)
    • (2002) JMLR , vol.3 , pp. 115-143
    • Gers, F.A.1    Schraudolph, N.N.2    Schmidhuber, J.3
  • 17
    • 0036531878 scopus 로고    scopus 로고
    • Multiagent learning using a variable learning rate
    • Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Artificial Intelligence 136, 215-250 (2002)
    • (2002) Artificial Intelligence , vol.136 , pp. 215-250
    • Bowling, M.1    Veloso, M.2
  • 18
    • 84899897951 scopus 로고    scopus 로고
    • Non-linear dynamics in multiagent reinforcement learning algorithms
    • Abdallah, S., Lesser, V.R.: Non-linear dynamics in multiagent reinforcement learning algorithms. In: AAMAS (3), pp. 1321-1324 (2008)
    • (2008) AAMAS , Issue.3 , pp. 1321-1324
    • Abdallah, S.1    Lesser, V.R.2
  • 19
    • 84884368079 scopus 로고    scopus 로고
    • Multi-agent learning with policy prediction
    • Zhang, Lesser: Multi-agent learning with policy prediction. In: AAAI (2010)
    • (2010) AAAI
    • Zhang, L.1
  • 20
    • 80052009144 scopus 로고    scopus 로고
    • Adaptive opponent modelling for the iterated prisoner's dilemma
    • Piccolo, E., Squillero, G.: Adaptive opponent modelling for the iterated prisoner's dilemma. In: IEEE CEC, pp. 836-841 (2011)
    • (2011) IEEE CEC , pp. 836-841
    • Piccolo, E.1    Squillero, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.