-
2
-
-
0023322501
-
Recognition-by-components: A theory of human image understanding
-
Apr
-
I. Biederman. Recognition-by-components: a theory of human image understanding. Psychological Review, 94(2):115–147, Apr. 1987.
-
(1987)
Psychological Review
, vol.94
, Issue.2
, pp. 115-147
-
-
Biederman, I.1
-
3
-
-
0042004575
-
Class-specific, top-down segmentation
-
E. Borenstein and S. Ullman. Class-specific, top-down segmentation. ECCV 2002, pages 639–641, 2002.
-
(2002)
ECCV 2002
, pp. 639-641
-
-
Borenstein, E.1
Ullman, S.2
-
4
-
-
84856743552
-
How does the brain solve visual object recognition?
-
Feb
-
J. J. DiCarlo, D. Zoccolan, and N. C. Rust. How Does the Brain Solve Visual Object Recognition? Neuron, 73(3):415–434, Feb. 2012.
-
(2012)
Neuron
, vol.73
, Issue.3
, pp. 415-434
-
-
DiCarlo, J.J.1
Zoccolan, D.2
Rust, N.C.3
-
5
-
-
0023846591
-
Neocognitron - a hierarchical neural network capable of visual-pattern recognition
-
K. Fukushima. Neocognitron - a Hierarchical Neural Network Capable of Visual-Pattern Recognition. Neural Networks, 1(2):119–130, 1988.
-
(1988)
Neural Networks
, vol.1
, Issue.2
, pp. 119-130
-
-
Fukushima, K.1
-
6
-
-
0036901915
-
Composition systems
-
S. Geman, D. Potter, and Z. Chi. Composition systems. Quarterly of Applied Mathematics, 60(4):707–736, 2002.
-
(2002)
Quarterly of Applied Mathematics
, vol.60
, Issue.4
, pp. 707-736
-
-
Geman, S.1
Potter, D.2
Chi, Z.3
-
7
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527–54, 2006.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
8
-
-
0023511687
-
Predictability and redundancy of natural images
-
D. Kersten. Predictability and redundancy of natural images. JOSA A, 4(12):2395–2400, 1987.
-
(1987)
JOSA A
, vol.4
, Issue.12
, pp. 2395-2400
-
-
Kersten, D.1
-
9
-
-
79953228462
-
Inference and learning with hierarchical shape models
-
June
-
I. Kokkinos and A. Yuille. Inference and learning with hierarchical shape models. Int. J. Comput. Vision, 93(2):201–225, June 2011.
-
(2011)
Int. J. Comput. Vision
, vol.93
, Issue.2
, pp. 201-225
-
-
Kokkinos, I.1
Yuille, A.2
-
10
-
-
0002263996
-
Convolutional networks for images, speech, and time-series
-
M. A. Arbib, editor, MIT Press
-
Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time-series. In M. A. Arbib, editor, The Handbook of Brain Theory and Neural Networks. MIT Press, 1995.
-
(1995)
The Handbook of Brain Theory and Neural Networks
-
-
LeCun, Y.1
Bengio, Y.2
-
11
-
-
0042565834
-
Hierarchical bayesian inference in the visual cortex
-
July
-
T. Lee and D. Mumford. Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 20(7):1434–1448, July 2003.
-
(2003)
Journal of the Optical Society of America A, Optics, Image Science, and Vision
, vol.20
, Issue.7
, pp. 1434-1448
-
-
Lee, T.1
Mumford, D.2
-
12
-
-
0032241095
-
Single units and visual cortical organization
-
P. Lennie. Single units and visual cortical organization. Perception, 27:889–935, 1998.
-
(1998)
Perception
, vol.27
, pp. 889-935
-
-
Lennie, P.1
-
14
-
-
0033316361
-
Hierarchical models of object recognition in cortex
-
M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, 2:1019–1025, 1999.
-
(1999)
Nature Neuroscience
, vol.2
, pp. 1019-1025
-
-
Riesenhuber, M.1
Poggio, T.2
-
15
-
-
33847380121
-
Robust object recognition with cortex-like mechanisms
-
T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust object recognition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29:411–426, 2007.
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, pp. 411-426
-
-
Serre, T.1
Wolf, L.2
Bileschi, S.3
Riesenhuber, M.4
Poggio, T.5
-
16
-
-
0029895137
-
Speed of processing in the human visual system
-
S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system. Nature, 381(6582):520–2, 1996.
-
(1996)
Nature
, vol.381
, Issue.6582
, pp. 520-522
-
-
Thorpe, S.1
Fize, D.2
Marlot, C.3
-
18
-
-
77956001004
-
Deconvolutional networks
-
M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus. Deconvolutional networks. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2528–2535, 2010.
-
(2010)
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on
, pp. 2528-2535
-
-
Zeiler, M.1
Krishnan, D.2
Taylor, G.3
Fergus, R.4
-
19
-
-
77955995797
-
Part and appearance sharing: Recursive compositional models for multi-view multi-object detection
-
L. Zhu, Y. Chen, A. Torralba, W. Freeman, and A. L. Yuille. Part and appearance sharing: Recursive compositional models for multi-view multi-object detection. In Proceedings of Computer Vision and Pattern Recognition, 2010.
-
(2010)
Proceedings of Computer Vision and Pattern Recognition
-
-
Zhu, L.1
Chen, Y.2
Torralba, A.3
Freeman, W.4
Yuille, A.L.5
-
20
-
-
70450134221
-
Unsupervised structure learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion
-
L. Zhu, C. Lin, H. Huang, Y. Chen, and A. L. Yuille. Unsupervised structure learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion. In Proceedings of The 10th European Conference on Computer Vision, 2008.
-
(2008)
Proceedings of the 10th European Conference on Computer Vision
-
-
Zhu, L.1
Lin, C.2
Huang, H.3
Chen, Y.4
Yuille, A.L.5
|