메뉴 건너뛰기




Volumn 93, Issue 2, 2011, Pages 201-225

Inference and learning with hierarchical shape models

Author keywords

Contours; Deformable models; Grouping; Hierarchy; Inference; Learning; Parsing; Shape

Indexed keywords

CONTOURS; DEFORMABLE MODELS; GROUPING; HIERARCHY; INFERENCE; LEARNING; PARSING; SHAPE;

EID: 79953228462     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-010-0398-7     Document Type: Article
Times cited : (31)

References (92)
  • 1
    • 0043005300 scopus 로고    scopus 로고
    • Learning a sparse representation for object detection
    • Agrawal, S., & Roth, D. (2002). Learning a sparse representation for object detection. In ECCV.
    • (2002) ECCV
    • Agrawal, S.1    Roth, D.2
  • 2
    • 50649123565 scopus 로고    scopus 로고
    • Learning the taxonomy and models of categories present in arbitrary images
    • Ahuja, N., & Todorovic, S. (2007). Learning the taxonomy and models of categories present in arbitrary images. In ICCV.
    • (2007) ICCV
    • Ahuja, N.1    Todorovic, S.2
  • 4
    • 85141266799 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • Andrews, S., Tsochantaridis, I., & Hofmann, T. (2002). Support vector machines for multiple-instance learning. In NIPS.
    • (2002) NIPS
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 7
    • 0042004575 scopus 로고    scopus 로고
    • Class-specific, top-down segmentation
    • Borenstein, E., & Ullman, S. (2002). Class-specific, top-down segmentation. In ECCV
    • (2002) ECCV
    • Borenstein, E.1    Ullman, S.2
  • 8
    • 84856633458 scopus 로고    scopus 로고
    • Rapid inference on a novel and/or graph for object detection, segmentation and parsing
    • Chen, Y., Zhu, L., Lin, C., Yuille, A. L., & Zhang, H. (2007). Rapid inference on a novel and/or graph for object detection, segmentation and parsing. In NIPS.
    • (2007) NIPS
    • Chen, Y.1    Zhu, L.2    Lin, C.3    Yuille, A.L.4    Zhang, H.5
  • 9
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • 10.1109/TIT.1968.1054142 0165.22305
    • C. Chow C. Liu 1968 Approximating discrete probability distributions with dependence trees IEEE Transactions on Information Theory 14 462 467 10.1109/TIT.1968.1054142 0165.22305
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 10
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms
    • Collins, M. (2002). Discriminative training methods for hidden Markov models: theory and experiments with perceptron algorithms. In EMNLP.
    • (2002) EMNLP
    • Collins, M.1
  • 11
    • 24644514946 scopus 로고    scopus 로고
    • Spatial priors for part-based recognition using statistical models
    • Crandall, D., Felzenszwalb, P., & Huttenlocher, D. (2005). Spatial priors for part-based recognition using statistical models. In CVPR.
    • (2005) CVPR
    • Crandall, D.1    Felzenszwalb, P.2    Huttenlocher, D.3
  • 14
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • PII S0004370296000343
    • T. G. Dietterich R. H. Lathrop T. Lozano-Perez 1997 Solving the multiple-instance problem with axis-parallel rectangles Artificial Intelligence 89 31 71 10.1016/S0004-3702(96)00034-3 1042.68650 (Pubitemid 127412230)
    • (1997) Artificial Intelligence , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 18
    • 34948830186 scopus 로고    scopus 로고
    • Hierarchical matching of deformable shapes
    • Felzenszwalb, P., & Schwartz, J. (2007). Hierarchical matching of deformable shapes. In CVPR.
    • (2007) CVPR
    • Felzenszwalb, P.1    Schwartz, J.2
  • 19
    • 51949101231 scopus 로고    scopus 로고
    • A discriminatively trained, multiscale, deformable part model
    • Felzenszwalb, P., McAllester, D., & Ramanan, D. (2008). A discriminatively trained, multiscale, deformable part model. In CVPR.
    • (2008) CVPR
    • Felzenszwalb, P.1    McAllester, D.2    Ramanan, D.3
  • 21
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • Fergus, R., Perona, P., & Zisserman, A. (2003). Object class recognition by unsupervised scale-invariant learning. In CVPR.
    • (2003) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 22
    • 24644483228 scopus 로고    scopus 로고
    • A sparse object category model for efficient learning and exhaustive recognition
    • Fergus, R., Perona, P., & Zisserman, A. (2005). A sparse object category model for efficient learning and exhaustive recognition. In CVPR.
    • (2005) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 23
    • 34948832159 scopus 로고    scopus 로고
    • Object detection by contour segment networks
    • Ferrari, V., Tuytelaars, T., & Gool, L. V. (2006). Object detection by contour segment networks. In ECCV.
    • (2006) ECCV
    • Ferrari, V.1    Tuytelaars, T.2    Gool, L.V.3
  • 24
    • 34948828581 scopus 로고    scopus 로고
    • Accurate object detection with deformable shape models learnt from images
    • Ferrari, V., Jurie, F., & Schmid, C. (2007). Accurate object detection with deformable shape models learnt from images. In CVPR.
    • (2007) CVPR
    • Ferrari, V.1    Jurie, F.2    Schmid, C.3
  • 26
    • 77951209257 scopus 로고    scopus 로고
    • From images to shape models for object detection
    • 10.1007/s11263-009-0270-9
    • V. Ferrari F. Jurie C. Schmid 2010 From images to shape models for object detection International Journal of Computer Vision 87 3 284 303 10.1007/s11263-009-0270-9
    • (2010) International Journal of Computer Vision , vol.87 , Issue.3 , pp. 284-303
    • Ferrari, V.1    Jurie, F.2    Schmid, C.3
  • 27
    • 35148867545 scopus 로고    scopus 로고
    • Towards scalable representations of object categories: Learning a hierarchy of parts
    • Fidler, S., & Leonardis, A. (2007). Towards scalable representations of object categories: learning a hierarchy of parts. In CVPR.
    • (2007) CVPR
    • Fidler, S.1    Leonardis, A.2
  • 28
    • 51949101472 scopus 로고    scopus 로고
    • Similarity-based cross-layered hierarchical representation for object categorization
    • Fidler, S., Boben, M., & Leonardis, A. (2008). Similarity-based cross-layered hierarchical representation for object categorization. In CVPR.
    • (2008) CVPR
    • Fidler, S.1    Boben, M.2    Leonardis, A.3
  • 29
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • DOI 10.1126/science.1136800
    • B. Frey D. Dueck 2007 Clustering by passing messages between data points Science 315 972 976 10.1126/science.1136800 2292174 (Pubitemid 46281181)
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 31
    • 58049100940 scopus 로고    scopus 로고
    • Deterministic annealing for multiple instance learning
    • Gehler, P., & Chapelle, O. (2007). Deterministic annealing for multiple instance learning. In AISTATS.
    • (2007) AISTATS
    • Gehler, P.1    Chapelle, O.2
  • 34
    • 33745829268 scopus 로고    scopus 로고
    • Bottom-up/top-down image parsing by attribute graph grammar
    • Han, F., & Zhu, S. C. (2005). Bottom-up/top-down image parsing by attribute graph grammar. In ICCV.
    • (2005) ICCV
    • Han, F.1    Zhu, S.C.2
  • 35
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • 0831.68096
    • D. Heckerman D. Geiger D. Chickering 1995 Learning Bayesian networks: the combination of knowledge and statistical data Machine Learning 20 197 243 0831.68096
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 37
    • 0035358875 scopus 로고    scopus 로고
    • Probabilistic methods for finding people
    • DOI 10.1023/A:1011179004708
    • S. Ioffe D. A. Forsyth 2001 Probabilistic methods for finding people International Journal of Computer Vision 43 45 68 10.1023/A:1011179004708 0972.68605 (Pubitemid 32723477)
    • (2001) International Journal of Computer Vision , vol.43 , Issue.1 , pp. 45-68
    • Ioffe, S.1    Forsyth, D.A.2
  • 39
    • 78149236721 scopus 로고    scopus 로고
    • Learning shape prior models for object matching
    • Jiang, T., Jurie, F., & Schmidt, C. (2009). Learning shape prior models for object matching. In CVPR.
    • (2009) CVPR
    • Jiang, T.1    Jurie, F.2    Schmidt, C.3
  • 40
    • 33845568397 scopus 로고    scopus 로고
    • Context and hierarchy in a probabilistic image model
    • Jin, Y., & Geman, S. (2006). Context and hierarchy in a probabilistic image model. In CVPR.
    • (2006) CVPR
    • Jin, Y.1    Geman, S.2
  • 42
    • 67650394405 scopus 로고    scopus 로고
    • Synergy between image segmentation and object recognition using the expectation maximization algorithm
    • 10.1109/TPAMI.2008.158
    • I. Kokkinos P. Maragos 2009 Synergy between image segmentation and object recognition using the expectation maximization algorithm IEEE Transactions on Pattern Analysis and Machine Intelligence 31 1486 1501 10.1109/TPAMI.2008.158
    • (2009) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.31 , pp. 1486-1501
    • Kokkinos, I.1    Maragos, P.2
  • 43
    • 50649100621 scopus 로고    scopus 로고
    • Unsupervised learning of object deformation models
    • Kokkinos, I., & Yuille, A. (2007). Unsupervised learning of object deformation models. In ICCV.
    • (2007) ICCV
    • Kokkinos, I.1    Yuille, A.2
  • 44
    • 51949084763 scopus 로고    scopus 로고
    • Scale invariance without scale selection
    • Kokkinos, I., & Yuille, A. (2008). Scale invariance without scale selection. In CVPR.
    • (2008) CVPR
    • Kokkinos, I.1    Yuille, A.2
  • 46
    • 33845571966 scopus 로고    scopus 로고
    • Bottom-up and top-down object detection using primal sketch features and graphical models
    • Kokkinos, I., Maragos, P., & Yuille, A. (2006). Bottom-up and top-down object detection using primal sketch features and graphical models. In CVPR.
    • (2006) CVPR
    • Kokkinos, I.1    Maragos, P.2    Yuille, A.3
  • 47
    • 51949099868 scopus 로고    scopus 로고
    • Beyond sliding windows: Object localization by efficient subwindow search
    • Lampert, C., Blaschko, M., & Hofmann, T. (2008). Beyond sliding windows: object localization by efficient subwindow search. In CVPR.
    • (2008) CVPR
    • Lampert, C.1    Blaschko, M.2    Hofmann, T.3
  • 48
    • 33646014576 scopus 로고    scopus 로고
    • Combined object categorization and segmentation with an implicit shape model
    • Leibe, B., Leonardis, A., & Schiele, B. (2004). Combined object categorization and segmentation with an implicit shape model. In ECCV, SLCV workshop.
    • (2004) ECCV, SLCV Workshop
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 49
    • 77951971163 scopus 로고    scopus 로고
    • Image segmentation by branch-and-mincut
    • Lempitsky, V., Blake, A., & Rother, C. (2008). Image segmentation by branch-and-mincut. In ECCV.
    • (2008) ECCV
    • Lempitsky, V.1    Blake, A.2    Rother, C.3
  • 50
    • 0032207814 scopus 로고    scopus 로고
    • Edge detection and ridge detection with automatic scale selection
    • 10.1023/A:1008097225773
    • T. Lindeberg 1998 Edge detection and ridge detection with automatic scale selection International Journal of Computer Vision 30 2 117 156 10.1023/A:1008097225773
    • (1998) International Journal of Computer Vision , vol.30 , Issue.2 , pp. 117-156
    • Lindeberg, T.1
  • 52
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 10.1023/B:VISI.0000029664.99615.94
    • D. Lowe 2004 Distinctive image features from scale-invariant keypoints International Journal of Computer Vision 60 91 110 10.1023/B:VISI.0000029664. 99615.94
    • (2004) International Journal of Computer Vision , vol.60 , pp. 91-110
    • Lowe, D.1
  • 53
    • 0035358181 scopus 로고    scopus 로고
    • Contour and texture analysis for image segmentation
    • DOI 10.1023/A:1011174803800
    • J. Malik S. Belongie T. Leung J. Shi 2001 Contour and texture analysis for image segmentation International Journal of Computer Vision 43 7 27 10.1023/A:1011174803800 0972.68604 (Pubitemid 32720090)
    • (2001) International Journal of Computer Vision , vol.43 , Issue.1 , pp. 7-27
    • Malik, J.1    Belongie, S.2    Leung, T.3    Shi, J.4
  • 54
    • 0003834557 scopus 로고
    • Freeman New York
    • Marr, D. (1982). Vision. New York: Freeman.
    • (1982) Vision
    • Marr, D.1
  • 55
    • 3042525106 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color, and texture cues
    • 10.1109/TPAMI.2004.1273918
    • D. Martin C. Fowlkes J. Malik 2004 Learning to detect natural image boundaries using local brightness, color, and texture cues IEEE Transactions on Pattern Analysis and Machine Intelligence 26 530 549 10.1109/TPAMI.2004.1273918
    • (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.26 , pp. 530-549
    • Martin, D.1    Fowlkes, C.2    Malik, J.3
  • 56
    • 34948911156 scopus 로고    scopus 로고
    • Randomized clustering forests for building fast and discriminative visual vocabularies
    • Moosmann, F., Triggs, B., & Jurie, F. (2006). Randomized clustering forests for building fast and discriminative visual vocabularies. In NIPS.
    • (2006) NIPS
    • Moosmann, F.1    Triggs, B.2    Jurie, F.3
  • 57
    • 35048858763 scopus 로고    scopus 로고
    • Recognition by probabilistic hypothesis construction
    • Moreels, P., Maire, M., & Perona, P. (2004). Recognition by probabilistic hypothesis construction. In ECCV (p. 55).
    • (2004) ECCV , pp. 55
    • Moreels, P.1    Maire, M.2    Perona, P.3
  • 58
    • 0002651956 scopus 로고
    • Elastica and computer vision
    • C. Bajaj (eds). Springer Berlin
    • Mumford, D. (1993). Elastica and computer vision. In C. Bajaj (Ed.), Algebraic geometry and its applications (pp. 507-518). Berlin: Springer.
    • (1993) Algebraic Geometry and Its Applications , pp. 507-518
    • Mumford, D.1
  • 59
    • 33845573438 scopus 로고    scopus 로고
    • Incremental learning of object detectors using a visual shape alphabet
    • Opelt, A., Pinz, A., & Zisserman, A. (2006a). Incremental learning of object detectors using a visual shape alphabet. In CVPR.
    • (2006) CVPR
    • Opelt, A.1    Pinz, A.2    Zisserman, A.3
  • 60
    • 33845593841 scopus 로고    scopus 로고
    • Boundary-fragment-model for object detection
    • Opelt, A., Pinz, A., & Zisserman, A. (2006b). Boundary-fragment-model for object detection. In CVPR.
    • (2006) CVPR
    • Opelt, A.1    Pinz, A.2    Zisserman, A.3
  • 61
    • 70450159373 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical spatial structures in images
    • Parikh, D., Zitnick, L., & Chen, T. (2009). Unsupervised learning of hierarchical spatial structures in images. In CVPR.
    • (2009) CVPR
    • Parikh, D.1    Zitnick, L.2    Chen, T.3
  • 62
    • 0004286550 scopus 로고
    • Addison-Wesley Reading
    • Pearl, J. (1984). Heuristics. Reading: Addison-Wesley.
    • (1984) Heuristics
    • Pearl, J.1
  • 63
    • 62349126013 scopus 로고    scopus 로고
    • Learning compositional models for object categories from small sample sets
    • Cambridge University Press Cambridge
    • Porway, J., Yao, B., & Zhu, S. C. (2008). Learning compositional models for object categories from small sample sets. In Object categorization: computer and human vision perspectives. Cambridge: Cambridge University Press.
    • (2008) Object Categorization: Computer and Human Vision Perspectives
    • Porway, J.1    Yao, B.2    Zhu, S.C.3
  • 65
    • 33845576119 scopus 로고    scopus 로고
    • Training deformable models for localization
    • Ramanan, D., & Sminchisescu, C. (2006). Training deformable models for localization. In CVPR.
    • (2006) CVPR
    • Ramanan, D.1    Sminchisescu, C.2
  • 67
    • 79953207759 scopus 로고
    • The ACRONYM model-based vision system
    • Russell, G., Brooks, R., & Binford, T. (1979). The ACRONYM model-based vision system. In IJCAI.
    • (1979) IJCAI
    • Russell, G.1    Brooks, R.2    Binford, T.3
  • 68
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • Russell, B. C., Efros, A. A., Sivic, J., Freeman, W. T., & Zisserman, A. (2006). Using multiple segmentations to discover objects and their extent in image collections. In CVPR
    • (2006) CVPR
    • Russell, B.C.1    Efros, A.A.2    Sivic, J.3    Freeman, W.T.4    Zisserman, A.5
  • 71
    • 33745868940 scopus 로고    scopus 로고
    • Contour-based learning for object recognition
    • Shotton, J., Blake, A., & Cipolla, R. (2005). Contour-based learning for object recognition. In ICCV.
    • (2005) ICCV
    • Shotton, J.1    Blake, A.2    Cipolla, R.3
  • 72
    • 51949114829 scopus 로고    scopus 로고
    • Semantic texton forests for image categorization and segmentation
    • Shotton, J., Johnson, M., & Cipolla, R. (2006). Semantic texton forests for image categorization and segmentation. In ECCV.
    • (2006) ECCV
    • Shotton, J.1    Johnson, M.2    Cipolla, R.3
  • 76
    • 33745918022 scopus 로고    scopus 로고
    • Learning hierarchical models of scenes, objects, and parts
    • Sudderth, E., Torralba, A., Freeman, W., & Willsky, A. (2005). Learning hierarchical models of scenes, objects, and parts. In ICCV.
    • (2005) ICCV
    • Sudderth, E.1    Torralba, A.2    Freeman, W.3    Willsky, A.4
  • 78
    • 33845579921 scopus 로고    scopus 로고
    • Extracting subimages of an unknown category from a set of images
    • Todorovic, S., & Ahuja, N. (2006). Extracting subimages of an unknown category from a set of images. In CVPR.
    • (2006) CVPR
    • Todorovic, S.1    Ahuja, N.2
  • 79
    • 51949111396 scopus 로고    scopus 로고
    • Learning subcategory relevances for category recognition
    • Todorovic, S., & Ahuja, N. (2008). Learning subcategory relevances for category recognition. In CVPR.
    • (2008) CVPR
    • Todorovic, S.1    Ahuja, N.2
  • 80
    • 17444392134 scopus 로고    scopus 로고
    • Image parsing: Unifying segmentation, detection, and recognition
    • DOI 10.1007/s11263-005-6642-x
    • Z. Tu X. Chen A. Yuille S. Zhu 2005 Image parsing: unifying segmentation, detection, and recognition International Journal of Computer Vision 63 113 140 10.1007/s11263-005-6642-x (Pubitemid 40536818)
    • (2005) International Journal of Computer Vision , vol.63 , Issue.2 , pp. 113-140
    • Tu, Z.1    Chen, X.2    Yuille, A.L.3    Zhu, S.-C.4
  • 81
    • 79953218446 scopus 로고    scopus 로고
    • Multiple-instance learning for weakly supervised object categorization
    • Vijayanarasimhan, S., & Grauman, K. (2008). Multiple-instance learning for weakly supervised object categorization. In CVPR.
    • (2008) CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 82
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In CVPR.
    • (2001) CVPR
    • Viola, P.1    Jones, M.2
  • 83
    • 45549083257 scopus 로고    scopus 로고
    • Multiple instance boosting and object detection
    • Viola, P., Platt, J. C., & Zhang, C. (2006). Multiple instance boosting and object detection. In NIPS.
    • (2006) NIPS
    • Viola, P.1    Platt, J.C.2    Zhang, C.3
  • 84
    • 0002409979 scopus 로고    scopus 로고
    • Unsupervised learning of models for recognition
    • Welling, M., Weber, M., & Perona, P. (2000). Unsupervised learning of models for recognition. In ECCV.
    • (2000) ECCV
    • Welling, M.1    Weber, M.2    Perona, P.3
  • 85
    • 50949122572 scopus 로고    scopus 로고
    • Deformable template as active basis
    • Wu, Y., Shi, Z., Fleming, C., & Zhu, S. C. (2007). Deformable template as active basis. In ICCV.
    • (2007) ICCV
    • Wu, Y.1    Shi, Z.2    Fleming, C.3    Zhu, S.C.4
  • 86
    • 0032025550 scopus 로고    scopus 로고
    • FRAME: Filters, random field and maximum entropy: Towards a unified theory for texture modeling
    • 10.1023/A:1007925832420
    • S. C. Zhu Y. N. Wu D. Mumford 1998 FRAME: filters, random field and maximum entropy: towards a unified theory for texture modeling International Journal of Computer Vision 27 2 1 20 10.1023/A:1007925832420
    • (1998) International Journal of Computer Vision , vol.27 , Issue.2 , pp. 1-20
    • Zhu, S.C.1    Wu, Y.N.2    Mumford, D.3
  • 88
    • 0030247213 scopus 로고    scopus 로고
    • Region competition: Unifying snakes, region growing, and bayes/mdl for multiband image segmentation
    • S. C. Zhu A. Yuille 1996 Region competition: unifying snakes region. Growing and Bayes/MDL for multiband image segmentation IEEE Transactions on Pattern Analysis and Machine Intelligence 18 884 900 10.1109/34.537343 (Pubitemid 126772831)
    • (1996) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.18 , Issue.9 , pp. 884-900
    • Zhu, S.C.1
  • 89
    • 70450134221 scopus 로고    scopus 로고
    • Unsupervised structure learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion
    • Zhu, L., Lin, C., Huang, H., Chen, Y., & Yuille, A. (2008a). Unsupervised structure learning: hierarchical recursive composition, suspicious coincidence and competitive exclusion. In ECCV.
    • (2008) ECCV
    • Zhu, L.1    Lin, C.2    Huang, H.3    Chen, Y.4    Yuille, A.5
  • 90
    • 51949119610 scopus 로고    scopus 로고
    • Max margin AND/OR graph learning for parsing the human body
    • Zhu, L., Chen, Y., Lu, Y., Lin, C., & Yuille, A. (2008b). Max margin AND/OR graph learning for parsing the human body. In CVPR.
    • (2008) CVPR
    • Zhu, L.1    Chen, Y.2    Lu, Y.3    Lin, C.4    Yuille, A.5
  • 91
    • 51949098135 scopus 로고    scopus 로고
    • Structure-perceptron learning of a hierarchical log-linear model
    • Zhu, L., Chen, Y., Ye, X., & Yuille, A. (2008c). Structure-perceptron learning of a hierarchical log-linear model. In CVPR.
    • (2008) CVPR
    • Zhu, L.1    Chen, Y.2    Ye, X.3    Yuille, A.4
  • 92
    • 61449119118 scopus 로고    scopus 로고
    • Contour context selection for object detection: A set-to-set contour matching approach
    • Zhu, Q., Wang, L., Wu, Y., & Shi, J. (2008d). Contour context selection for object detection: a set-to-set contour matching approach. In ECCV.
    • (2008) ECCV
    • Zhu, Q.1    Wang, L.2    Wu, Y.3    Shi, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.