메뉴 건너뛰기




Volumn , Issue , 2015, Pages

Learning activation functions to improve deep neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; BOSONS; CHEMICAL ACTIVATION; GRADIENT METHODS; NETWORK ARCHITECTURE; NEURAL NETWORKS; PIECEWISE LINEAR TECHNIQUES;

EID: 85083953189     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (117)

References (26)
  • 1
    • 84903779279 scopus 로고    scopus 로고
    • Searching for exotic particles in high-energy physics with deep learning
    • Baldi, P, Sadowski, P, and Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nature Communications, 5, 2014.
    • (2014) Nature Communications , vol.5
    • Baldi, P.1    Sadowski, P.2    Whiteson, D.3
  • 3
    • 78149334888 scopus 로고    scopus 로고
    • Large margin classification in infinite neural networks
    • Cho, Youngmin and Saul, Lawrence. Large margin classification in infinite neural networks. Neural Computation, 22(10), 2010.
    • (2010) Neural Computation , vol.22 , Issue.10
    • Cho, Y.1    Saul, L.2
  • 4
    • 84977065560 scopus 로고    scopus 로고
    • Asymptotic formulae for likelihood-based tests of new physics
    • Cowan, Glen, Cranmer, Kyle, Gross, Eilam, and Vitells, Ofer. Asymptotic formulae for likelihood-based tests of new physics. Eur.Phys.J., C71:1554, 2011. doi: 10.1140/epjc/s10052-011-1554-0.
    • (2011) Eur.Phys.J. , vol.C71 , pp. 1554
    • Cowan, G.1    Cranmer, K.2    Gross, E.3    Vitells, O.4
  • 5
    • 84867316765 scopus 로고    scopus 로고
    • Deep architectures for protein contact map prediction
    • First published online: July 30, 2012
    • Di Lena, P., Nagata, K., and Baldi, P. Deep architectures for protein contact map prediction. Bioinformatics, 28:2449–2457, 2012. doi: 10.1093/bioinformatics/bts475. First published online: July 30, 2012.
    • (2012) Bioinformatics , vol.28 , pp. 2449-2457
    • Di Lena, P.1    Nagata, K.2    Baldi, P.3
  • 11
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, Kurt, Stinchcombe, Maxwell, and White, Halbert. Multilayer feedforward networks are universal approximators. Neural networks, 2(5):359–366, 1989.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 18
    • 84880542260 scopus 로고    scopus 로고
    • Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
    • Lusci, Alessandro, Pollastri, Gianluca, and Baldi, Pierre. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. Journal of chemical information and modeling, 53(7):1563–1575, 2013.
    • (2013) Journal of Chemical Information and Modeling , vol.53 , Issue.7 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 19
    • 84893676344 scopus 로고    scopus 로고
    • Rectifier nonlinearities improve neural network acoustic models
    • Maas, Andrew L, Hannun, Awni Y, and Ng, Andrew Y. Rectifier nonlinearities improve neural network acoustic models. In Proc. ICML, volume 30, 2013.
    • (2013) Proc. ICML , vol.30
    • Maas, A.L.1    Hannun, A.Y.2    Ng, A.Y.3
  • 24
    • 84912086327 scopus 로고    scopus 로고
    • Neuroevolution: Evolving heterogeneous artificial neural networks
    • Turner, Andrew James and Miller, Julian Francis. Neuroevolution: Evolving heterogeneous artificial neural networks. Evolutionary Intelligence, pp. 1–20, 2014.
    • (2014) Evolutionary Intelligence , pp. 1-20
    • Turner, A.J.1    Miller, J.F.2
  • 26
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao, Xin. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.