-
1
-
-
84903779279
-
Searching for exotic particles in high-energy physics with deep learning
-
Baldi, P, Sadowski, P, and Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nature Communications, 5, 2014.
-
(2014)
Nature Communications
, vol.5
-
-
Baldi, P.1
Sadowski, P.2
Whiteson, D.3
-
3
-
-
78149334888
-
Large margin classification in infinite neural networks
-
Cho, Youngmin and Saul, Lawrence. Large margin classification in infinite neural networks. Neural Computation, 22(10), 2010.
-
(2010)
Neural Computation
, vol.22
, Issue.10
-
-
Cho, Y.1
Saul, L.2
-
4
-
-
84977065560
-
Asymptotic formulae for likelihood-based tests of new physics
-
Cowan, Glen, Cranmer, Kyle, Gross, Eilam, and Vitells, Ofer. Asymptotic formulae for likelihood-based tests of new physics. Eur.Phys.J., C71:1554, 2011. doi: 10.1140/epjc/s10052-011-1554-0.
-
(2011)
Eur.Phys.J.
, vol.C71
, pp. 1554
-
-
Cowan, G.1
Cranmer, K.2
Gross, E.3
Vitells, O.4
-
5
-
-
84867316765
-
Deep architectures for protein contact map prediction
-
First published online: July 30, 2012
-
Di Lena, P., Nagata, K., and Baldi, P. Deep architectures for protein contact map prediction. Bioinformatics, 28:2449–2457, 2012. doi: 10.1093/bioinformatics/bts475. First published online: July 30, 2012.
-
(2012)
Bioinformatics
, vol.28
, pp. 2449-2457
-
-
Di Lena, P.1
Nagata, K.2
Baldi, P.3
-
6
-
-
84862294866
-
Deep sparse rectifier networks
-
Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. Deep sparse rectifier networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. JMLR W&CP Volume, volume 15, pp. 315–323, 2011.
-
(2011)
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. JMLR W&CP Volume
, vol.15
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
7
-
-
84892421248
-
-
arXiv preprint
-
Goodfellow, Ian J, Warde-Farley, David, Mirza, Mehdi, Courville, Aaron, and Bengio, Yoshua. Maxout networks. arXiv preprint arXiv:1302.4389, 2013.
-
(2013)
Maxout Networks
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
8
-
-
84907016671
-
Learned-norm pooling for deep feedforward and recurrent neural networks
-
Springer
-
Gulcehre, Caglar, Cho, Kyunghyun, Pascanu, Razvan, and Bengio, Yoshua. Learned-norm pooling for deep feedforward and recurrent neural networks. In Machine Learning and Knowledge Discovery in Databases, pp. 530–546. Springer, 2014.
-
(2014)
Machine Learning and Knowledge Discovery in Databases
, pp. 530-546
-
-
Gulcehre, C.1
Cho, K.2
Pascanu, R.3
Bengio, Y.4
-
9
-
-
84946802549
-
Deep speech: Scaling up end-to-end speech recognition
-
Hannun, Awni Y., Case, Carl, Casper, Jared, Catanzaro, Bryan C., Diamos, Greg, Elsen, Erich, Prenger, Ryan, Satheesh, Sanjeev, Sengupta, Shubho, Coates, Adam, and Ng, Andrew Y. Deep speech: Scaling up end-to-end speech recognition. CoRR, abs/1412.5567, 2014. URL http: //arxiv.org/abs/1412.5567.
-
(2014)
CoRR
-
-
Hannun, A.Y.1
Case, C.2
Casper, J.3
Catanzaro, B.C.4
Diamos, G.5
Elsen, E.6
Prenger, R.7
Satheesh, S.8
Sengupta, S.9
Coates, A.10
Ng, A.Y.11
-
10
-
-
84867720412
-
-
arXiv preprint
-
Hinton, Geoffrey E, Srivastava, Nitish, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
11
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, Kurt, Stinchcombe, Maxwell, and White, Halbert. Multilayer feedforward networks are universal approximators. Neural networks, 2(5):359–366, 1989.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
12
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
IEEE
-
Jarrett, Kevin, Kavukcuoglu, Koray, Ranzato, M, and LeCun, Yann. What is the best multi-stage architecture for object recognition? In Computer Vision, 2009 IEEE 12th International Conference on, pp. 2146–2153. IEEE, 2009.
-
(2009)
Computer Vision, 2009 IEEE 12th International Conference on
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
13
-
-
84913555165
-
-
arXiv preprint
-
Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, Karayev, Sergey, Long, Jonathan, Girshick, Ross, Guadarrama, Sergio, and Darrell, Trevor. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
15
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
16
-
-
85009928594
-
-
arXiv preprint
-
Lee, Chen-Yu, Xie, Saining, Gallagher, Patrick, Zhang, Zhengyou, and Tu, Zhuowen. Deeply-supervised nets. arXiv preprint arXiv:1409.5185, 2014.
-
(2014)
Deeply-Supervised Nets
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
18
-
-
84880542260
-
Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
-
Lusci, Alessandro, Pollastri, Gianluca, and Baldi, Pierre. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. Journal of chemical information and modeling, 53(7):1563–1575, 2013.
-
(2013)
Journal of Chemical Information and Modeling
, vol.53
, Issue.7
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
19
-
-
84893676344
-
Rectifier nonlinearities improve neural network acoustic models
-
Maas, Andrew L, Hannun, Awni Y, and Ng, Andrew Y. Rectifier nonlinearities improve neural network acoustic models. In Proc. ICML, volume 30, 2013.
-
(2013)
Proc. ICML
, vol.30
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
20
-
-
84869201485
-
Practical bayesian optimization of machine learning algorithms
-
Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P. Practical bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems, pp. 2951–2959, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 2951-2959
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
22
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
23
-
-
84937961845
-
Deep networks with internal selective attention through feedback connections
-
Stollenga, Marijn F, Masci, Jonathan, Gomez, Faustino, and Schmidhuber, Jürgen. Deep networks with internal selective attention through feedback connections. In Advances in Neural Information Processing Systems, pp. 3545–3553, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3545-3553
-
-
Stollenga, M.F.1
Masci, J.2
Gomez, F.3
Schmidhuber, J.4
-
24
-
-
84912086327
-
Neuroevolution: Evolving heterogeneous artificial neural networks
-
Turner, Andrew James and Miller, Julian Francis. Neuroevolution: Evolving heterogeneous artificial neural networks. Evolutionary Intelligence, pp. 1–20, 2014.
-
(2014)
Evolutionary Intelligence
, pp. 1-20
-
-
Turner, A.J.1
Miller, J.F.2
-
26
-
-
0033362601
-
Evolving artificial neural networks
-
Yao, Xin. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.
-
(1999)
Proceedings of the IEEE
, vol.87
, Issue.9
, pp. 1423-1447
-
-
Yao, X.1
|