-
1
-
-
84958264664
-
-
Software available from tensorflow.org
-
Abadi, Martín, Agarwal, Ashish, Barham, Paul, et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from tensorflow.org.
-
(2015)
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
-
2
-
-
85021234737
-
-
arXiv preprint
-
Abuzaid, Firas, Hadjis, Stefan, Zhang, Ce, and Ré, Christopher. Caffe con Troll: Shallow ideas to speed up deep learning. arXiv preprint arXiv:1504.04343, 2015.
-
(2015)
Caffe Con Troll: Shallow Ideas to Speed up Deep Learning
-
-
Abuzaid, F.1
Hadjis, S.2
Zhang, C.3
Ré, C.4
-
3
-
-
84953884359
-
Spark SQL: Relational data processing in Spark
-
Armbrust, Michael, Xin, Reynold S, Lian, Cheng, Huai, Yin, Liu, Davies, Bradley, Joseph K, Meng, Xiangrui, Kaftan, Tomer, Franklin, Michael J, Ghodsi, Ali, et al. Spark SQL: Relational data processing in Spark. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1383–1394. ACM, 2015.
-
(2015)
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
, pp. 1383-1394
-
-
Armbrust, M.1
Xin, R.S.2
Lian, C.3
Huai, Y.4
Liu, D.5
Bradley, J.K.6
Meng, X.7
Kaftan, T.8
Franklin, M.J.9
Ghodsi, A.10
-
4
-
-
85069497682
-
Project ADAM: Building an efficient and scalable deep learning training system
-
Chilimbi, Trishul, Suzue, Yutaka, Apacible, Johnson, and Kalyanaraman, Karthik. Project Adam: Building an efficient and scalable deep learning training system. In 11th USENIX Symposium on Operating Systems Design and Implementation, pp. 571–582, 2014.
-
(2014)
11th USENIX Symposium on Operating Systems Design and Implementation
, pp. 571-582
-
-
Chilimbi, T.1
Suzue, Y.2
Apacible, J.3
Kalyanaraman, K.4
-
5
-
-
84894294885
-
Deep learning with cots hpc systems
-
Coates, Adam, Huval, Brody, Wang, Tao, Wu, David, Catanzaro, Bryan, and Andrew, Ng. Deep learning with cots hpc systems. In Proceedings of the 30th International Conference on Machine Learning, pp. 1337–1345, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
, pp. 1337-1345
-
-
Coates, A.1
Huval, B.2
Wang, T.3
Wu, D.4
Catanzaro, B.5
Andrew, N.6
-
6
-
-
37549003336
-
MapReduce: Simplified data processing on large clusters
-
Dean, Jeffrey and Ghemawat, Sanjay. MapReduce: simplified data processing on large clusters. Communications of the ACM, 51(1):107–113, 2008.
-
(2008)
Communications of the ACM
, vol.51
, Issue.1
, pp. 107-113
-
-
Dean, J.1
Ghemawat, S.2
-
7
-
-
84877760312
-
Large scale distributed deep networks
-
Dean, Jeffrey, Corrado, Greg, Monga, Rajat, Chen, Kai, Devin, Matthieu, Mao, Mark, Ranzato, Marc’Aurelio, Senior, Andrew, Tucker, Paul, Yang, Ke, Le, Quoc V., and Ng, Andrew Y. Large scale distributed deep networks. In Advances in Neural Information Processing Systems, pp. 1223–1231, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1223-1231
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Mao, M.6
Ranzato, M.7
Senior, A.8
Tucker, P.9
Yang, K.10
Le, Q.V.11
Ng, A.Y.12
-
8
-
-
85072954017
-
GraphX: Graph processing in a distributed dataflow framework
-
Gonzalez, Joseph E, Xin, Reynold S, Dave, Ankur, Crankshaw, Daniel, Franklin, Michael J, and Stoica, Ion. Graphx: Graph processing in a distributed dataflow framework. In Proceedings of OSDI, pp. 599–613, 2014.
-
(2014)
Proceedings of OSDI
, pp. 599-613
-
-
Gonzalez, J.E.1
Xin, R.S.2
Dave, A.3
Crankshaw, D.4
Franklin, M.J.5
Stoica, I.6
-
9
-
-
84898988368
-
More effective distributed ML via a stale synchronous parallel parameter server
-
Ho, Qirong, Cipar, James, Cui, Henggang, Lee, Seunghak, Kim, Jin Kyu, Gibbons, Phillip B, Gibson, Garth A, Ganger, Greg, and Xing, Eric P. More effective distributed ML via a stale synchronous parallel parameter server. In Advances in Neural Information Processing Systems, pp. 1223–1231, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 1223-1231
-
-
Ho, Q.1
Cipar, J.2
Cui, H.3
Lee, S.4
Kim, J.K.5
Gibbons, P.B.6
Gibson, G.A.7
Ganger, G.8
Xing, E.P.9
-
10
-
-
85015228288
-
-
arXiv preprint
-
Iandola, Forrest N, Ashraf, Khalid, Moskewicz, Mattthew W, and Keutzer, Kurt. FireCaffe: near-linear acceleration of deep neural network training on compute clusters. arXiv preprint arXiv:1511.00175, 2015.
-
(2015)
FireCaffe: Near-Linear Acceleration of Deep Neural Network Training on Compute Clusters
-
-
Iandola, F.N.1
Ashraf, K.2
Moskewicz, M.W.3
Keutzer, K.4
-
11
-
-
34548041192
-
Dryad: Distributed data-parallel programs from sequential building blocks
-
Isard, Michael, Budiu, Mihai, Yu, Yuan, Birrell, Andrew, and Fetterly, Dennis. Dryad: Distributed data-parallel programs from sequential building blocks. In Proceedings of the 2nd ACM SIGOP-S/EuroSys European Conference on Computer Systems, pp. 59–72, 2007.
-
(2007)
Proceedings of the 2nd ACM SIGOP-S/EuroSys European Conference on Computer Systems
, pp. 59-72
-
-
Isard, M.1
Budiu, M.2
Yu, Y.3
Birrell, A.4
Fetterly, D.5
-
12
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, Karayev, Sergey, Long, Jonathan, Girshick, Ross, Guadarrama, Sergio, and Darrell, Trevor. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM, 2014.
-
(2014)
Proceedings of the ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
13
-
-
84876231242
-
Imagenet classification with deep convo-lutional neural networks
-
Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with deep convo-lutional neural networks. In Advances in Neural Information Processing Systems, pp. 1097–1105, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
14
-
-
84937912100
-
Scaling distributed machine learning with the parameter server
-
Li, Mu, Andersen, David G, Park, Jun Woo, Smola, Alexander J, Ahmed, Amr, Josifovski, Vanja, Long, James, Shekita, Eugene J, and Su, Bor-Yiing. Scaling distributed machine learning with the parameter server. In 11th USENIX Symposium on Operating Systems Design and Implementation, pp. 583–598, 2014.
-
(2014)
11th USENIX Symposium on Operating Systems Design and Implementation
, pp. 583-598
-
-
Li, M.1
Andersen, D.G.2
Park, J.W.3
Smola, A.J.4
Ahmed, A.5
Josifovski, V.6
Long, J.7
Shekita, E.J.8
Su, B.-Y.9
-
15
-
-
84943360496
-
-
arXiv preprint
-
Meng, Xiangrui, Bradley, Joseph, Yavuz, Burak, Sparks, Evan, Venkataraman, Shivaram, Liu, Davies, Freeman, Jeremy, Tsai, DB, Amde, Manish, Owen, Sean, et al. MLlib: Machine learning in Apache Spark. arXiv preprint arXiv:1505.06807, 2015.
-
(2015)
MLlib: Machine Learning in Apache Spark
-
-
Meng, X.1
Bradley, J.2
Yavuz, B.3
Sparks, E.4
Venkataraman, S.5
Liu, D.6
Freeman, J.7
Tsai, D.B.8
Amde, M.9
Owen, S.10
-
16
-
-
84889658377
-
Naiad: A timely dataflow system
-
Murray, Derek G, McSherry, Frank, Isaacs, Rebecca, Isard, Michael, Barham, Paul, and Abadi, Martín. Naiad: a timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, pp. 439–455. ACM, 2013.
-
(2013)
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles
, pp. 439-455
-
-
Murray, D.G.1
McSherry, F.2
Isaacs, R.3
Isard, M.4
Barham, P.5
Abadi, M.6
-
18
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, Sanjeev, Ma, Sean, Huang, Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein, Michael, Berg, Alexander C., and Fei-Fei, Li. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, pp. 1–42, 2015.
-
(2015)
International Journal of Computer Vision
, pp. 1-42
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
19
-
-
85080587950
-
-
Sparks, Evan R., Venkataraman, Shivaram, Kaftan, Tomer, Franklin, Michael, and Recht, Benjamin. KeystoneML: End-to-end machine learning pipelines at scale. 2015.
-
(2015)
KeystoneML: End-to-End Machine Learning Pipelines at Scale
-
-
Sparks, E.R.1
Venkataraman, S.2
Kaftan, T.3
Franklin, M.4
Recht, B.5
-
20
-
-
84937522268
-
Going deeper with convolutions
-
Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet, Pierre, Reed, Scott, Anguelov, Dragomir, Erhan, Dumitru, Vanhoucke, Vincent, and Rabinovich, Andrew. Going deeper with convolutions. In Computer Vision and Pattern Recognition, 2015.
-
(2015)
Computer Vision and Pattern Recognition
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
21
-
-
85085251984
-
Spark: Cluster computing with working sets
-
Zaharia, Matei, Chowdhury, Mosharaf, Franklin, Michael J, Shenker, Scott, and Stoica, Ion. Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud computing, volume 10, pp. 10, 2010.
-
(2010)
Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing
, vol.10
, pp. 10
-
-
Zaharia, M.1
Chowdhury, M.2
Franklin, M.J.3
Shenker, S.4
Stoica, I.5
-
22
-
-
84889637396
-
Discretized streams: Fault-tolerant streaming computation at scale
-
Zaharia, Matei, Das, Tathagata, Li, Haoyuan, Hunter, Timothy, Shenker, Scott, and Stoica, Ion. Discretized streams: Fault-tolerant streaming computation at scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, pp. 423–438. ACM, 2013.
-
(2013)
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles
, pp. 423-438
-
-
Zaharia, M.1
Das, T.2
Li, H.3
Hunter, T.4
Shenker, S.5
Stoica, I.6
-
23
-
-
84965152276
-
Deep learning with elastic averaging SGD
-
Zhang, Sixin, Choromanska, Anna E, and LeCun, Yann. Deep learning with elastic averaging SGD. In Advances in Neural Information Processing Systems, pp. 685–693, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 685-693
-
-
Zhang, S.1
Choromanska, A.E.2
LeCun, Y.3
-
25
-
-
85161967549
-
Parallelized stochastic gradient descent
-
Zinkevich, Martin, Weimer, Markus, Li, Lihong, and Smola, Alex J. Parallelized stochastic gradient descent. In Advances in Neural Information Processing Systems, pp. 2595–2603, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 2595-2603
-
-
Zinkevich, M.1
Weimer, M.2
Li, L.3
Smola, A.J.4
|