메뉴 건너뛰기




Volumn 2015-May, Issue , 2015, Pages 1383-1394

Spark SQL: Relational data processing in spark

Author keywords

Data warehouse; Databases; Hadoop; Machine learning; Spark

Indexed keywords

APPLICATION PROGRAMMING INTERFACES (API); ARTIFICIAL INTELLIGENCE; CATALYSTS; DATA WAREHOUSES; DATABASE SYSTEMS; DIGITAL STORAGE; ELECTRIC SPARKS; FUNCTIONAL PROGRAMMING; LEARNING SYSTEMS;

EID: 84953884359     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2723372.2742797     Document Type: Conference Paper
Times cited : (1183)

References (40)
  • 1
    • 84904324992 scopus 로고    scopus 로고
    • Invisible loading: Access-driven data transfer from raw files into database systems
    • A. Abouzied, D. J. Abadi, and A. Silberschatz. Invisible loading: Access-driven data transfer from raw files into database systems. In EDBT, 2013.
    • (2013) EDBT
    • Abouzied, A.1    Abadi, D.J.2    Silberschatz, A.3
  • 2
    • 84911993592 scopus 로고    scopus 로고
    • The Stratosphere platform for big data analytics
    • Dec.
    • A. Alexandrov et al. The Stratosphere platform for big data analytics. The VLDB Journal, 23(6):939-964, Dec. 2014.
    • (2014) The VLDB Journal , vol.23 , Issue.6 , pp. 939-964
    • Alexandrov, A.1
  • 8
    • 79958269648 scopus 로고    scopus 로고
    • Asterix: Towards a scalable, semistructured data platform for evolving-world models
    • A. Behm et al. Asterix: towards a scalable, semistructured data platform for evolving-world models. Distributed and Parallel Databases, 29(3):185-216, 2011.
    • (2011) Distributed and Parallel Databases , vol.29 , Issue.3 , pp. 185-216
    • Behm, A.1
  • 9
    • 84882718707 scopus 로고    scopus 로고
    • Inferring XML schema definitions from XML data
    • G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML schema definitions from XML data. In VLDB, 2007.
    • (2007) VLDB
    • Bex, G.J.1    Neven, F.2    Vansummeren, S.3
  • 10
    • 84957560372 scopus 로고    scopus 로고
    • BigDF project. https://github.com/AyasdiOpenSource/bigdf.
    • BigDF project1
  • 16
    • 0001890225 scopus 로고
    • The Cascades framework for query optimization
    • G. Graefe. The Cascades framework for query optimization. IEEE Data Engineering Bulletin, 18(3), 1995.
    • (1995) IEEE Data Engineering Bulletin , vol.18 , Issue.3
    • Graefe, G.1
  • 17
    • 84976698894 scopus 로고
    • The EXODUS optimizer generator
    • G. Graefe and D. DeWitt. The EXODUS optimizer generator. In SIGMOD, 1987.
    • (1987) SIGMOD
    • Graefe, G.1    DeWitt, D.2
  • 18
    • 84899045808 scopus 로고    scopus 로고
    • XStruct: Efficient schema extraction from multiple and large XML documents
    • J. Hegewald, F. Naumann, and M. Weis. XStruct: efficient schema extraction from multiple and large XML documents. In ICDE Workshops, 2006.
    • (2006) ICDE Workshops
    • Hegewald, J.1    Naumann, F.2    Weis, M.3
  • 20
    • 70849091519 scopus 로고    scopus 로고
    • Distributed data-parallel computing using a high-level programming language
    • M. Isard and Y. Yu. Distributed data-parallel computing using a high-level programming language. In SIGMOD, 2009.
    • (2009) SIGMOD
    • Isard, M.1    Yu, Y.2
  • 22
    • 84901812859 scopus 로고    scopus 로고
    • Building efficient query engines in a high-level language
    • Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building efficient query engines in a high-level language. PVLDB, 7(10):853-864, 2014.
    • (2014) PVLDB , vol.7 , Issue.10 , pp. 853-864
    • Klonatos, Y.1    Koch, C.2    Rompf, T.3    Chafi, H.4
  • 23
    • 85084011754 scopus 로고    scopus 로고
    • Impala: A modern, open-source SQL engine for Hadoop
    • M. Kornacker et al. Impala: A modern, open-source SQL engine for Hadoop. In CIDR, 2015.
    • (2015) CIDR
    • Kornacker, M.1
  • 24
    • 84863735533 scopus 로고    scopus 로고
    • Distributed GraphLab: A framework for machine learning and data mining in the cloud
    • Y. Low et al. Distributed GraphLab: a framework for machine learning and data mining in the cloud. VLDB, 2012.
    • (2012) VLDB
    • Low, Y.1
  • 25
    • 79958258284 scopus 로고    scopus 로고
    • Dremel: Interactive analysis of web-scale datasets
    • Sept 2010
    • S. Melnik et al. Dremel: interactive analysis of web-scale datasets. Proc. VLDB Endow., 3:330-339, Sept 2010.
    • Proc. VLDB Endow. , vol.3 , pp. 330-339
    • Melnik, S.1
  • 27
    • 84957575041 scopus 로고    scopus 로고
    • Extracting schema from semistructured data
    • S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from semistructured data. In ICDM, 1998.
    • (1998) ICDM
    • Nestorov, S.1    Abiteboul, S.2    Motwani, R.3
  • 31
    • 70350512695 scopus 로고    scopus 로고
    • A comparison of approaches to large-scale data analysis
    • A. Pavlo et al. A comparison of approaches to large-scale data analysis. In SIGMOD, 2009.
    • (2009) SIGMOD
    • Pavlo, A.1
  • 35
    • 84904301003 scopus 로고    scopus 로고
    • Sinew: A SQL system for multi-structured data
    • D. Tahara, T. Diamond, and D. J. Abadi. Sinew: A SQL system for multi-structured data. In SIGMOD, 2014.
    • (2014) SIGMOD
    • Tahara, D.1    Diamond, T.2    Abadi, D.J.3
  • 36
    • 77952775707 scopus 로고    scopus 로고
    • Hive-a petabyte scale data warehouse using Hadoop
    • A. Thusoo et al. Hive-a petabyte scale data warehouse using Hadoop. In ICDE, 2010.
    • (2010) ICDE
    • Thusoo, A.1
  • 37
    • 84955607329 scopus 로고
    • Monads for functional programming
    • Springer
    • P. Wadler. Monads for functional programming. In Advanced Functional Programming, pages 24-52. Springer, 1995.
    • (1995) Advanced Functional Programming , pp. 24-52
    • Wadler, P.1
  • 39
    • 85040175609 scopus 로고    scopus 로고
    • Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
    • M. Zaharia et al. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In NSDI, 2012.
    • (2012) NSDI
    • Zaharia, M.1
  • 40
    • 84957581091 scopus 로고    scopus 로고
    • G-OLA: Generalized online aggregation for interactive analysis on big data
    • K. Zeng et al. G-OLA: Generalized online aggregation for interactive analysis on big data. In SIGMOD, 2015.
    • (2015) SIGMOD
    • Zeng, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.