-
1
-
-
84896374602
-
The zero surface tension limit of two-dimensional interfacial Darcy flow
-
D. Ambrose, The zero surface tension limit of two-dimensional interfacial Darcy flow. J. Math. Fluid Mech. 16 (2014) 105–143.
-
(2014)
J. Math. Fluid Mech.
, vol.16
, pp. 105-143
-
-
Ambrose, D.1
-
2
-
-
16644399272
-
Well-posedness of two-phase Hele-Shaw flow without surface tension
-
D.M. Ambrose, Well-posedness of two-phase Hele-Shaw flow without surface tension. Eur. J. Appl. Math. 15 (2004) 597–607.
-
(2004)
Eur. J. Appl. Math.
, vol.15
, pp. 597-607
-
-
Ambrose, D.M.1
-
5
-
-
84910071582
-
Global existence for some transport equations with nonlocal velocity
-
H. Bae and R. Granero-Belinchón, Global existence for some transport equations with nonlocal velocity. Adv. Math. 269 (2015) 197–219.
-
(2015)
Adv. Math.
, vol.269
, pp. 197-219
-
-
Bae, H.1
Granero-Belinchón, R.2
-
8
-
-
4544330532
-
Vanishing viscosity limit and long-time behavior for 2d quasi-geostrophic equations
-
L.C Berselli, Vanishing viscosity limit and long-time behavior for 2d quasi-geostrophic equations. Indiana U. Math. J. 51 (2002) 905–930.
-
(2002)
Indiana U. Math. J.
, vol.51
, pp. 905-930
-
-
Berselli, L.C.1
-
10
-
-
0011360878
-
Investigation of a class of function spaces in connection with imbedding and extension theorems
-
O.V. Besov, Investigation of a class of function spaces in connection with imbedding and extension theorems. Trudy Matematicheskogo Instituta imeni VA Steklova 60 (1961) 42–81.
-
(1961)
Trudy Matematicheskogo Instituta Imeni VA Steklova
, vol.60
, pp. 42-81
-
-
Besov, O.V.1
-
11
-
-
0000626041
-
Mechanism of fluid displacement in sands
-
S.E. Buckley and M.C. Leverett, Mechanism of fluid displacement in sands. Trans. Aime 146 (1941) 107–116.
-
(1941)
Trans. Aime
, vol.146
, pp. 107-116
-
-
Buckley, S.E.1
Leverett, M.C.2
-
12
-
-
85057945799
-
Global well-posedness for the 2d Muskat problem with slope less than 1
-
S. Cameron, Global well-posedness for the 2d Muskat problem with slope less than 1. Anal. PDE 12 (2019) 997–1022.
-
(2019)
Anal. PDE
, vol.12
, pp. 997-1022
-
-
Cameron, S.1
-
13
-
-
84857721683
-
Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves
-
A. Castro, D. Cordoba, C. Fefferman, F. Gancedo and M. Lopez-Fernandez, Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves. Ann. Math. 175 (2012) 909–948.
-
(2012)
Ann. Math.
, vol.175
, pp. 909-948
-
-
Castro, A.1
Cordoba, D.2
Fefferman, C.3
Gancedo, F.4
Lopez-Fernandez, M.5
-
18
-
-
84861014036
-
Modelling the dynamics of a geothermal reservoir fed by gravity driven flow through overstanding saturated rocks
-
M. Cerminara and A. Fasano, Modelling the dynamics of a geothermal reservoir fed by gravity driven flow through overstanding saturated rocks. J. Volcanol. Geotherm. Res. 233 (2012) 37–54.
-
(2012)
J. Volcanol. Geotherm. Res.
, vol.233
, pp. 37-54
-
-
Cerminara, M.1
Fasano, A.2
-
19
-
-
84862807288
-
Generalized surface quasi-geostrophic equations with singular velocities
-
D. Chae, P. Constantin, D. Córdoba, F. Gancedo and J. Wu, Generalized surface quasi-geostrophic equations with singular velocities. Commun. Pure Appl. Math. 65 (2012) 1037–1066.
-
(2012)
Commun. Pure Appl. Math.
, vol.65
, pp. 1037-1066
-
-
Chae, D.1
Constantin, P.2
Córdoba, D.3
Gancedo, F.4
Wu, J.5
-
21
-
-
21144479953
-
The hele-shaw problem and area-preserving curve-shortening motions
-
X. Chen, The hele-shaw problem and area-preserving curve-shortening motions. Arch. Ration. Mech. Anal. 123 (1993) 117–151.
-
(1993)
Arch. Ration. Mech. Anal.
, vol.123
, pp. 117-151
-
-
Chen, X.1
-
22
-
-
0000851461
-
Global solutions for small data to the Hele-Shaw problem
-
P. Constantin and M. Pugh, Global solutions for small data to the Hele-Shaw problem. Nonlinearity 6 (1993) 393–415.
-
(1993)
Nonlinearity
, vol.6
, pp. 393-415
-
-
Constantin, P.1
Pugh, M.2
-
23
-
-
0043172071
-
Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar
-
P. Constantin, A.J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7 (1994) 1495.
-
(1994)
Nonlinearity
, vol.7
, pp. 1495
-
-
Constantin, P.1
Majda, A.J.2
Tabak, E.3
-
24
-
-
0006748306
-
Singular front formation in a model for quasi-geostrophic flow
-
P. Constantin, A.J. Majda and E.G. Tabak, Singular front formation in a model for quasi-geostrophic flow. Phys. Fluids 6 (1994) 9.
-
(1994)
Phys. Fluids
, vol.6
, pp. 9
-
-
Constantin, P.1
Majda, A.J.2
Tabak, E.G.3
-
26
-
-
85006154598
-
On the Muskat problem: Global in time results in 2d and 3d
-
P. Constantin, D. Cordoba, F. Gancedo, L. Rodríguez-Piazza and R.M. Strain, On the Muskat problem: global in time results in 2d and 3d. Am. J. Math. 138 (2016) 6.
-
(2016)
Am. J. Math.
, vol.138
, pp. 6
-
-
Constantin, P.1
Cordoba, D.2
Gancedo, F.3
Rodríguez-Piazza, L.4
Strain, R.M.5
-
28
-
-
4544377751
-
A maximum principle applied to quasi-geostrophic equations
-
A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249 (2004) 511–528.
-
(2004)
Commun. Math. Phys.
, vol.249
, pp. 511-528
-
-
Córdoba, A.1
Córdoba, D.2
-
29
-
-
34249881893
-
Contour dynamics of incompressible 3-D fluids in a porous medium with different densities
-
D. Córdoba and F. Gancedo, Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Commun. Math. Phys. 273 (2007) 445–471.
-
(2007)
Commun. Math. Phys.
, vol.273
, pp. 445-471
-
-
Córdoba, D.1
Gancedo, F.2
-
30
-
-
58849109361
-
A maximum principle for the Muskat problem for fluids with different densities
-
D. Córdoba and F. Gancedo, A maximum principle for the Muskat problem for fluids with different densities. Commun. Math. Phys. 286 (2009) 681–696.
-
(2009)
Commun. Math. Phys.
, vol.286
, pp. 681-696
-
-
Córdoba, D.1
Gancedo, F.2
-
31
-
-
77955845839
-
Absence of squirt singularities for the multi-phase Muskat problem
-
D. Córdoba and F. Gancedo, Absence of squirt singularities for the multi-phase Muskat problem. Commun. Math. Phys. 299 (2010) 561–575.
-
(2010)
Commun. Math. Phys.
, vol.299
, pp. 561-575
-
-
Córdoba, D.1
Gancedo, F.2
-
32
-
-
84992083408
-
Non-splat singularity for the one-phase Muskat problem
-
D. Cordoba and T. Pernas-Castaño, Non-splat singularity for the one-phase Muskat problem. Trans. Am. Math. Soc. 369 (2017) 711–754.
-
(2017)
Trans. Am. Math. Soc.
, vol.369
, pp. 711-754
-
-
Cordoba, D.1
Pernas-Castaño, T.2
-
34
-
-
67650500731
-
The Rayleigh-Taylor condition for the evolution of irrotational fluid interfaces
-
A. Cordoba, D. Cordoba and F. Gancedo, The Rayleigh-Taylor condition for the evolution of irrotational fluid interfaces. Proc. Natl. Acad. Sci. 106 (2009) 10955–10959.
-
(2009)
Proc. Natl. Acad. Sci.
, vol.106
, pp. 10955-10959
-
-
Cordoba, A.1
Cordoba, D.2
Gancedo, F.3
-
35
-
-
78751624212
-
Interface evolution: The Hele-Shaw and Muskat problems
-
A. Cordoba, D. Córdoba and F. Gancedo, Interface evolution: the Hele-Shaw and Muskat problems. Ann. Math. 173 (2011) 477–542.
-
(2011)
Ann. Math.
, vol.173
, pp. 477-542
-
-
Cordoba, A.1
Córdoba, D.2
Gancedo, F.3
-
36
-
-
84882688666
-
Porous media: The Muskat problem in three dimensions
-
A. Córdoba, D. Córdoba and F. Gancedo, Porous media: the Muskat problem in three dimensions. Anal. PDE 6 (2013) 447–497.
-
(2013)
Anal. PDE
, vol.6
, pp. 447-497
-
-
Córdoba, A.1
Córdoba, D.2
Gancedo, F.3
-
37
-
-
84891391945
-
On the confined Muskat problem: Differences with the deep water regime
-
D. Córdoba, R. Granero-Belinchón and R. Orive, On the confined Muskat problem: differences with the deep water regime. Commun. Math. Sci. 12 (2014) 423–455.
-
(2014)
Commun. Math. Sci.
, vol.12
, pp. 423-455
-
-
Córdoba, D.1
Granero-Belinchón, R.2
Orive, R.3
-
39
-
-
85014599257
-
A note on stability shifting for the Muskat problem II: From stable to unstable and back to stable
-
D. Córdoba, J. Gómez-Serrano and A. Zlatoš, A note on stability shifting for the Muskat problem ii: from stable to unstable and back to stable. Anal. PDE 10 (2017) 367–378.
-
(2017)
Anal. PDE
, vol.10
, pp. 367-378
-
-
Córdoba, D.1
Gómez-Serrano, J.2
Zlatoš, A.3
-
40
-
-
34548446988
-
Well-posedness of the free-surface incompressible Euler equations with or without surface tension
-
D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20 (2006) 829–930.
-
(2006)
J. Am. Math. Soc.
, vol.20
, pp. 829-930
-
-
Coutand, D.1
Shkoller, S.2
-
41
-
-
84959109234
-
On the impossibility of finite-time splash singularities for vortex sheets
-
D. Coutand and S. Shkoller, On the impossibility of finite-time splash singularities for vortex sheets. Arch. Ration. Mech. Anal. 221 (2016) 987–1033.
-
(2016)
Arch. Ration. Mech. Anal.
, vol.221
, pp. 987-1033
-
-
Coutand, D.1
Shkoller, S.2
-
43
-
-
77950654121
-
On the decay properties of solutions to a class of Schrödinger equations
-
L. Dawson, H. McGahagan and G. Ponce, On the decay properties of solutions to a class of Schrödinger equations. Proc. Am. Math. Soc. 136 (2008) 2081–2090.
-
(2008)
Proc. Am. Math. Soc.
, vol.136
, pp. 2081-2090
-
-
Dawson, L.1
McGahagan, H.2
Ponce, G.3
-
45
-
-
79953645127
-
On the parabolicity of the Muskat problem: Well-posedness, fingering, and stability results
-
J. Escher and B.-V. Matioc, On the parabolicity of the Muskat problem: well-posedness, fingering, and stability results. Z. Anal. Anwend. 30 (2011) 193–218.
-
(2011)
Z. Anal. Anwend.
, vol.30
, pp. 193-218
-
-
Escher, J.1
Matioc, B.-V.2
-
46
-
-
0000010015
-
Classical solutions for Hele–Shaw models with surface tension
-
J. Escher and G. Simonett, Classical solutions for Hele–Shaw models with surface tension. Adv. Differ. Equ. 2 (1997) 619–642.
-
(1997)
Adv. Differ. Equ.
, vol.2
, pp. 619-642
-
-
Escher, J.1
Simonett, G.2
-
47
-
-
0001025274
-
A center manifold analysis for the Mullins–Sekerka model
-
J. Escher and G. Simonett, A center manifold analysis for the Mullins–Sekerka model. J. Differ. Equ. 143 (1998) 267–292.
-
(1998)
J. Differ. Equ.
, vol.143
, pp. 267-292
-
-
Escher, J.1
Simonett, G.2
-
48
-
-
84858405608
-
A generalized Rayleigh-Taylor condition for the Muskat problem
-
J. Escher, A.-V. Matioc and B.-V. Matioc, A generalized Rayleigh-Taylor condition for the Muskat problem. Nonlinearity 25 (2012) 73–92.
-
(2012)
Nonlinearity
, vol.25
, pp. 73-92
-
-
Escher, J.1
Matioc, A.-V.2
Matioc, B.-V.3
-
50
-
-
84958781337
-
On the absence of splash singularities in the case of two-fluid interfaces
-
C. Fefferman, A.D. Ionescu, V. Lie, On the absence of splash singularities in the case of two-fluid interfaces. Duke Math. J. 165 (2016) 417–462.
-
(2016)
Duke Math. J.
, vol.165
, pp. 417-462
-
-
Fefferman, C.1
Ionescu, A.D.2
Lie, V.3
-
51
-
-
85053251852
-
Piecewise constant subsolutions for the Muskat problem
-
C. Förster and L. Székelyhidi Jr., Piecewise constant subsolutions for the Muskat problem. Commun. Math. Phys. 363 (2018) 1051–1080.
-
(2018)
Commun. Math. Phys.
, vol.363
, pp. 1051-1080
-
-
Förster, C.1
Székelyhidi, L.2
-
52
-
-
79953029001
-
Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics
-
S. Friedlander and V. Vicol, Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics. Ann. Inst. Henri Poincaré (C) Non Lin. Anal. 28 (2011) 283–301.
-
(2011)
Ann. Inst. Henri Poincaré (C) Non Lin. Anal.
, vol.28
, pp. 283-301
-
-
Friedlander, S.1
Vicol, V.2
-
53
-
-
80054975955
-
On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations
-
S. Friedlander and V. Vicol, On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations. Nonlinearity 24 (2011) 3019.
-
(2011)
Nonlinearity
, vol.24
, pp. 3019
-
-
Friedlander, S.1
Vicol, V.2
-
54
-
-
84868136432
-
On the supercritically diffusive magnetogeostrophic equations
-
S. Friedlander, W. Rusin and V. Vicol, On the supercritically diffusive magnetogeostrophic equations. Nonlinearity 25 (2012) 3071.
-
(2012)
Nonlinearity
, vol.25
, pp. 3071
-
-
Friedlander, S.1
Rusin, W.2
Vicol, V.3
-
55
-
-
84940038675
-
The magneto-geostrophic equations: A survey
-
American Mathematical Society, Providence, USA
-
S. Friedlander, W. Rusin, V. Vicol and A.I. Nazarov, The magneto-geostrophic equations: a survey. Proceedings of the St. Petersburg Mathematical Society, Volume XV: Advances in Mathematical Analysis of Partial Differential Equations. American Mathematical Society, Providence, USA (2014).
-
(2014)
Proceedings of the St. Petersburg Mathematical Society, Volume XV: Advances in Mathematical Analysis of Partial Differential Equations
-
-
Friedlander, S.1
Rusin, W.2
Vicol, V.3
Nazarov, A.I.4
-
57
-
-
39749086442
-
Existence for the α-patch model and the QG sharp front in Sobolev spaces
-
F. Gancedo, Existence for the α-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217 (2008) 2569–2598.
-
(2008)
Adv. Math.
, vol.217
, pp. 2569-2598
-
-
Gancedo, F.1
-
58
-
-
84892577446
-
Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem
-
F. Gancedo and R.M. Strain, Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem. Proc. Natl. Acad. Sci. 111 (2014) 635–639.
-
(2014)
Proc. Natl. Acad. Sci.
, vol.111
, pp. 635-639
-
-
Gancedo, F.1
Strain, R.M.2
-
59
-
-
85059958527
-
On the muskat problem with viscosity jump: Global in time results
-
F. Gancedo, E. Garcia-Juarez, N. Patel and R.M. Strain, On the muskat problem with viscosity jump: Global in time results. Adv. Math. 345 (2019) 552–597.
-
(2019)
Adv. Math.
, vol.345
, pp. 552-597
-
-
Gancedo, F.1
Garcia-Juarez, E.2
Patel, N.3
Strain, R.M.4
-
60
-
-
84901712643
-
On turning waves for the inhomogeneous Muskat problem: A computer-assisted proof
-
J. Gómez-Serrano and R. Granero-Belinchón, On turning waves for the inhomogeneous Muskat problem: a computer-assisted proof. Nonlinearity 27 (2014) 1471–1498.
-
(2014)
Nonlinearity
, vol.27
, pp. 1471-1498
-
-
Gómez-Serrano, J.1
Granero-Belinchón, R.2
-
61
-
-
84902663105
-
Global existence for the confined Muskat problem
-
R. Granero-Belinchón. Global existence for the confined Muskat problem. SIAM J. Math. Anal. 46 (2014) 1651–1680.
-
(2014)
SIAM J. Math. Anal.
, vol.46
, pp. 1651-1680
-
-
Granero-Belinchón, R.1
-
62
-
-
85055745034
-
Well-posedness and decay to equilibrium for the muskat problem with discontinuous permeability (2016)
-
R. Granero-Belinchón and S. Shkoller, Well-posedness and decay to equilibrium for the muskat problem with discontinuous permeability (2016). Trans. Amer. Math. Soc. 372 (2019) 2255–2286.
-
(2019)
Trans. Amer. Math. Soc.
, vol.372
, pp. 2255-2286
-
-
Granero-Belinchón, R.1
Shkoller, S.2
-
65
-
-
0025685840
-
Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries
-
S.M. Hassanizadeh and W.G. Gray, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13 (1990) 169–186.
-
(1990)
Adv. Water Resour.
, vol.13
, pp. 169-186
-
-
Hassanizadeh, S.M.1
Gray, W.G.2
-
66
-
-
33749026600
-
The flow of water
-
H.S. Hele-Shaw, The flow of water. Nature 58 (1898) 34–36.
-
(1898)
Nature
, vol.58
, pp. 34-36
-
-
Hele-Shaw, H.S.1
-
67
-
-
0345415372
-
On the motion of a viscous fluid between two parallel plates
-
H.S. Hele-Shaw, On the motion of a viscous fluid between two parallel plates. Trans. Roy. Inst. Nav. Archit. 40 (1898) 218.
-
(1898)
Trans. Roy. Inst. Nav. Archit.
, vol.40
, pp. 218
-
-
Hele-Shaw, H.S.1
-
69
-
-
33846785446
-
Global well-posedness for the critical 2D dissipative quasi-geostrophic equation
-
A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167 (2007) 445–453.
-
(2007)
Invent. Math.
, vol.167
, pp. 445-453
-
-
Kiselev, A.1
Nazarov, F.2
Volberg, A.3
-
70
-
-
84879926155
-
Global existence for the critical dissipative surface quasi-geostrophic equation
-
O. Lazar, Global existence for the critical dissipative surface quasi-geostrophic equation. Commun. Math. Phys. 322 (2013) 73–93.
-
(2013)
Commun. Math. Phys.
, vol.322
, pp. 73-93
-
-
Lazar, O.1
-
72
-
-
0000669501
-
A two-dimensional model for quasigeostrophic flow: Comparison with the two-dimensional Euler flow
-
A.J. Majda and E.G. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow. Phys. D: Nonlin. Phenom. 98 (1996) 515–522.
-
(1996)
Phys. D: Nonlin. Phenom.
, vol.98
, pp. 515-522
-
-
Majda, A.J.1
Tabak, E.G.2
-
74
-
-
85055746542
-
The muskat problem in 2d: Equivalence of formulations, well-posedness, and regularity results
-
B.-V. Matioc, The muskat problem in 2d: equivalence of formulations, well-posedness, and regularity results. Anal. PDE 12 (2018) 281–332.
-
(2018)
Anal. PDE
, vol.12
, pp. 281-332
-
-
Matioc, B.-V.1
-
75
-
-
85051792996
-
Viscous displacement in porous media: The Muskat problem in 2D
-
B.-V. Matioc, Viscous displacement in porous media: the Muskat problem in 2D. Trans. Am. Math. Soc. 370 (2018) 7511–7556.
-
(2018)
Trans. Am. Math. Soc.
, vol.370
, pp. 7511-7556
-
-
Matioc, B.-V.1
-
77
-
-
85055740468
-
Well-posedness and stability results for a quasilinear periodic muskat problem
-
A.-V. Matioc and B.-V. Matioc, Well-posedness and stability results for a quasilinear periodic muskat problem. J. Differ. Equ. 266 (2019) 5500–5531.
-
(2019)
J. Differ. Equ.
, vol.266
, pp. 5500-5531
-
-
Matioc, A.-V.1
Matioc, B.-V.2
-
78
-
-
0028254999
-
The magnetostrophic rise of a buoyant parcel in the earth’s core
-
H.K. Moffatt and D.E. Loper, The magnetostrophic rise of a buoyant parcel in the earth’s core. Geophys. J. Int. 117 (1994) 394–402.
-
(1994)
Geophys. J. Int.
, vol.117
, pp. 394-402
-
-
Moffatt, H.K.1
Loper, D.E.2
-
79
-
-
0041033033
-
Two fluid systems in porous media. The encroachment of water into an oil sand
-
M. Muskat, Two fluid systems in porous media. the encroachment of water into an oil sand. Physics 5 (1934) 250–264.
-
(1934)
Physics
, vol.5
, pp. 250-264
-
-
Muskat, M.1
-
80
-
-
33947317086
-
The flow of fluids through porous media
-
M. Muskat, The flow of fluids through porous media. J. Appl. Phys. 8 (1937) 274–282.
-
(1937)
J. Appl. Phys.
, vol.8
, pp. 274-282
-
-
Muskat, M.1
-
81
-
-
84891430110
-
The flow of homogeneous fluids through porous media
-
M. Muskat, The flow of homogeneous fluids through porous media. Soil Sci. 46 (1938) 169.
-
(1938)
Soil Sci
, vol.46
, pp. 169
-
-
Muskat, M.1
-
83
-
-
0039525530
-
Evolution of microstructure in unstable porous media flow: A relaxational approach
-
F. Otto, Evolution of microstructure in unstable porous media flow: a relaxational approach. Commun. Pure Appl. Math. 52 (1999) 873–915.
-
(1999)
Commun. Pure Appl. Math.
, vol.52
, pp. 873-915
-
-
Otto, F.1
-
84
-
-
0346562860
-
Evolution of microstructure: An example
-
Springer, Berlin
-
F. Otto, Evolution of microstructure: an example, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, Berlin (2001) 501–522.
-
(2001)
Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems
, pp. 501-522
-
-
Otto, F.1
-
85
-
-
85020232624
-
Large time decay estimates for the Muskat equation
-
N. Patel and R.M. Strain, Large time decay estimates for the Muskat equation. Commun. Part. Differ. Equ. 42 (2017) 977–999.
-
(2017)
Commun. Part. Differ. Equ.
, vol.42
, pp. 977-999
-
-
Patel, N.1
Strain, R.M.2
-
86
-
-
85018497302
-
Local-existence for the inhomogeneous Muskat problem
-
T. Pernas-Castaño, Local-existence for the inhomogeneous Muskat problem. Nonlinearity 30 (2017) 2063.
-
(2017)
Nonlinearity
, vol.30
, pp. 2063
-
-
Pernas-Castaño, T.1
-
88
-
-
45749106469
-
On the instability of jets
-
L. Rayleigh, On the instability of jets. Proc. London Math. Soc. s1-10 (1878) 4–13.
-
(1878)
Proc. London Math. Soc.
, vol.s1-10
, pp. 4-13
-
-
Rayleigh, L.1
-
89
-
-
17844372561
-
On the evolution of sharp fronts for the quasi-geostrophic equation
-
J. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation. Comm. Pure Appl. Math. 58 (2005) 821–866.
-
(2005)
Comm. Pure Appl. Math.
, vol.58
, pp. 821-866
-
-
Rodrigo, J.1
-
91
-
-
0001383598
-
The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid
-
P.G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. Roy. Soc. London Ser. A 245 (1958) 312–329.
-
(1958)
Proc. Roy. Soc. London Ser. A
, vol.245
, pp. 312-329
-
-
Saffman, P.G.1
Taylor, G.2
-
92
-
-
4544228729
-
Global existence, singular solutions, and ill-posedness for the Muskat problem
-
M. Siegel, R.E. Caflisch and S. Howison, Global existence, singular solutions, and ill-posedness for the Muskat problem. Commun. Pure Appl. Math. 57 (2004) 1374–1411.
-
(2004)
Commun. Pure Appl. Math.
, vol.57
, pp. 1374-1411
-
-
Siegel, M.1
Caflisch, R.E.2
Howison, S.3
-
93
-
-
84867458807
-
Relaxation of the incompressible porous media equation
-
L. Székelyhidi Jr., Relaxation of the incompressible porous media equation. Ann. Sci. Éc. Norm. Supér. 45 (2012) 491–509.
-
(2012)
Ann. Sci. Éc. Norm. Supér.
, vol.45
, pp. 491-509
-
-
Székelyhidi, L.1
-
94
-
-
0002117462
-
Incompressible fluid flow in a porous medium-convergence of the homogenization process
-
edited by E. Sánchez-Palencia. Springer-Verlag Berlin
-
L. Tartar, Incompressible fluid flow in a porous medium-convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez-Palencia. Springer-Verlag Berlin (1980).
-
(1980)
Nonhomogeneous Media and Vibration Theory
-
-
Tartar, L.1
-
95
-
-
84907700721
-
Hele-shaw beach creation by breaking waves: A mathematics-inspired experiment
-
A.R. Thornton, A.J. van der Horn, E. Gagarina, W. Zweers, D. van der Meer and O. Bokhove, Hele-shaw beach creation by breaking waves: a mathematics-inspired experiment. Environ. Fluid Mech. 14 (2014) 1123–1145.
-
(2014)
Environ. Fluid Mech.
, vol.14
, pp. 1123-1145
-
-
Thornton, A.R.1
van der Horn, A.J.2
Gagarina, E.3
Zweers, W.4
van der Meer, D.5
Bokhove, O.6
-
96
-
-
85032200247
-
On the existence of solutions to the Muskat problem with surface tension
-
S. Tofts, On the existence of solutions to the Muskat problem with surface tension. J. Math. Fluid Mech. 19 (2017) 581–611.
-
(2017)
J. Math. Fluid Mech.
, vol.19
, pp. 581-611
-
-
Tofts, S.1
|