-
1
-
-
0038384640
-
A free boundary problem for an elliptic-parabolic system: Application to a model of tumor growth
-
B.V. BAZALIY - A. FRIEDMAN, A free boundary problem for an elliptic-parabolic system: Application to a model of tumor growth. Communications in PDE, 28, 2003, 517-560. (Pubitemid 36714450)
-
(2003)
Communications in Partial Differential Equations
, vol.28
, Issue.3-4
, pp. 517-560
-
-
Bazaliy, B.V.1
Friedman, A.2
-
2
-
-
0242679755
-
Global Existence and Asymptotic Stability for An Elliptic-parabolic Free Boundary Problem: An Application to a Model of Tumor Growth
-
B.V. BAZALIY - A. FRIEDMAN, Global existence and stability for an elliptic-parabolic free boundary problem; An application to a model of tumor growth. Indiana University Math. J., 52, 2003, 1265-1304. (Pubitemid 37395642)
-
(2003)
Indiana University Mathematics Journal
, vol.52
, Issue.5
, pp. 1265-1304
-
-
Bazaliy, B.1
Friedman, A.2
-
3
-
-
1042298948
-
Growth of nonnecrotic tumours in the presence and absence of inhibitors
-
H.M. BYRNE - M.A.J. CHAPLAIN, Growth of nonnecrotic tumours in the presence and absence of inhibitors. Mathematical Biosciences, 181, 1995, 130-151.
-
(1995)
Mathematical Biosciences
, vol.181
, pp. 130-151
-
-
Byrne, H.M.1
Chaplain, M.A.J.2
-
5
-
-
3142764638
-
-
X. CHEN - A. FRIEDMAN, A free boundary problem for elliptic-hyperbolic system: An application to tumor growth. SIAM J. Math. Analysis, 35, 4, 2003, 974-976.
-
(2003)
A Free Boundary Problem for Elliptic-hyperbolic System: An Application to Tumor Growth. SIAM J. Math. Analysis
, vol.35
, Issue.4
, pp. 974-976
-
-
Chen, X.1
Friedman, A.2
-
6
-
-
0034040582
-
Analysis of a mathematical model of the effect of inhibitors on the growth of tumors
-
DOI 10.1016/S0025-5564(99)00063-2, PII S0025556499000632
-
S. CUI - A. FRIEDMAN, Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Math. Biosci., 164, 2000, 103-137. (Pubitemid 30211012)
-
(2000)
Mathematical Biosciences
, vol.164
, Issue.2
, pp. 103-137
-
-
Cui, S.1
Friedman, A.2
-
7
-
-
0042363716
-
A free boundary problem for a singular system of differential equations: An application to a model of tumor growth
-
S. CUI - A. FRIEDMAN, A free boundary problem for a singular system of differential equations: An application to a model of tumor growth. Trans. AMS, 355, 2003, 3537-3590. (Pubitemid 37052684)
-
(2003)
Transactions of the American Mathematical Society
, vol.355
, Issue.9
, pp. 3537-3590
-
-
Cui, S.1
Friedman, A.2
-
8
-
-
84979081677
-
A hyperbolic free boundary problem modeling tumor growth
-
S. CUI - A. FRIEDMAN, A hyperbolic free boundary problem modeling tumor growth. Interfaces and Free Boundaries, 5, 2003, 159-181.
-
(2003)
Interfaces and Free Boundaries
, vol.5
, pp. 159-181
-
-
Cui, S.1
Friedman, A.2
-
9
-
-
0142028939
-
Symmetry-breaking bifurcations of free boundary problems in three dimensions
-
M. FONTELOS - A. FRIEDMAN, Symmetry-breaking bifurcations of free boundary problems in three dimensions. Asymptotic Analysis, 35, 2003, 187-206.
-
(2003)
Asymptotic Analysis
, vol.35
, pp. 187-206
-
-
Fontelos, M.1
Friedman, A.2
-
10
-
-
0033094895
-
Analysis of a mathematical model for the growth of tumors
-
A. FRIEDMAN - F. REITICH, Analysis of a mathematical model for the growth of tumors. J. Math. Biol., 38, 1999, 262-284.
-
(1999)
J. Math. Biol.
, vol.38
, pp. 262-284
-
-
Friedman, A.1
Reitich, F.2
-
11
-
-
0242588180
-
Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth
-
A. FRIEDMAN - F. REITICH, Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth. Trans. Amer. Math. Soc., 353, 2000, 1587-1634.
-
(2000)
Trans. Amer. Math. Soc.
, vol.353
, pp. 1587-1634
-
-
Friedman, A.1
Reitich, F.2
-
12
-
-
1042298945
-
On the existence of spatially patterned dormant malignancies in a model for the growth of non-necrotic vascular tumor
-
A. FRIEDMAN - F. REITICH, On the existence of spatially patterned dormant malignancies in a model for the growth of non-necrotic vascular tumor. Math. Models and Methods in Appl. Sciences, 77, 2001, 1-25.
-
(2001)
Math. Models and Methods in Appl. Sciences
, vol.77
, pp. 1-25
-
-
Friedman, A.1
Reitich, F.2
-
13
-
-
1342310604
-
Analysis of a model of a virus that replicates selectively in tumor cells
-
DOI 10.1007/s00285-003-0199-5
-
A. FRIEDMAN - Y. TAO, Analysis of a model of a virus that replicates selectively in tumor cells. J. Math. Biology, 47, 2003, 391-423. (Pubitemid 38261105)
-
(2003)
Journal of Mathematical Biology
, vol.47
, Issue.5
, pp. 391-423
-
-
Friedman, A.1
Tao, Y.2
-
14
-
-
0017198676
-
On the growth and stability of cell cultures and solid tumors
-
H. GREENSPAN, On the growth and stability of cell cultures and solid tumors. J. Theor. Biol., 56, 1976, 229-242.
-
(1976)
J. Theor. Biol.
, vol.56
, pp. 229-242
-
-
Greenspan, H.1
-
15
-
-
0034977131
-
The migration of cells in multicell tumor spheroids
-
DOI 10.1006/bulm.2000.0217
-
G. PETTET - C.P. PLEASE - M.J. TANDALL - D. MCELWAIN, The migration of cells in multicell tumor spheroids. Bull. Math. Biol., 63, 2001, 231-257. (Pubitemid 32577707)
-
(2001)
Bulletin of Mathematical Biology
, vol.63
, Issue.2
, pp. 231-257
-
-
Pettet, G.J.1
Please, M.J.2
Tindall, C.P.3
McElwain, D.L.S.4
-
16
-
-
0034905801
-
Modeling and analysis of a virus that replicates selectively in tumor cells
-
DOI 10.1006/bulm.2001.0245
-
J.T. WU - H.M. BYRNE - D.H. KIRN - L.M. WEIN, Modeling and analysis of a virus that replicate selectively in tumor cells. Bull. Math. Biology, 63, 2001, 731-768. (Pubitemid 32721011)
-
(2001)
Bulletin of Mathematical Biology
, vol.63
, Issue.4
, pp. 731-768
-
-
Wu, J.T.1
Byrne, H.M.2
Kirn, D.H.3
Wein, L.M.4
|