-
1
-
-
16644399272
-
Well-posedness of two-phase hele-shaw flow without surface tension
-
Ambrose, D. M., (2004). Well-posedness of two-phase hele-shaw flow without surface tension. Eur. J. Appl. Math. 15:597–607. doi:https://doi.org/10.1017/S0956792504005662.
-
(2004)
Eur. J. Appl. Math.
, vol.15
, pp. 597-607
-
-
Ambrose, D.M.1
-
2
-
-
0032059987
-
Local existence of classical solutions to first-order parabolic equations describing free boundaries
-
Bailly, J.-H., (1998). Local existence of classical solutions to first-order parabolic equations describing free boundaries. Nonlinear Anal. 32:583–599. doi:https://doi.org/10.1016/S0362-546X(97)00504-X.
-
(1998)
Nonlinear Anal.
, vol.32
, pp. 583-599
-
-
Bailly, J.-H.1
-
4
-
-
84885390314
-
Duchon–Robert solutions for the Rayleigh–Taylor and Muskat problems
-
Beck, T., Sosoe, P., Wong, P., (2014). Duchon–Robert solutions for the Rayleigh–Taylor and Muskat problems. J. Differ. Eq. 256:206–222. doi:https://doi.org/10.1016/j.jde.2013.09.001.
-
(2014)
J. Differ. Eq.
, vol.256
, pp. 206-222
-
-
Beck, T.1
Sosoe, P.2
Wong, P.3
-
5
-
-
21144469486
-
Global regularity for vortex patches
-
(MR1207667)
-
Bertozzi, A.L., Constantin, P., (1993). Global regularity for vortex patches. Commun. Math. Phys. 152:19–28 (MR1207667).
-
(1993)
Commun. Math. Phys.
, vol.152
, pp. 19-28
-
-
Bertozzi, A.L.1
Constantin, P.2
-
6
-
-
84877066576
-
Breakdown of smoothness for the Muskat problem
-
Castro, Á., Córdoba, D., Fefferman, C., Gancedo, F., (2013). Breakdown of smoothness for the Muskat problem. Arch. Ration. Mech. Anal. 208:805–909. doi:https://doi.org/10.1007/s00205-013-0616-x(MR3048596).
-
(2013)
Arch. Ration. Mech. Anal.
, vol.208
, pp. 805-909
-
-
Castro, Á.1
Córdoba, D.2
Fefferman, C.3
Gancedo, F.4
-
7
-
-
84857721683
-
Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves
-
Castro, Á., Córdoba, D., Fefferman, C., Gancedo, F., López-Fernández, M., (2012). Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves. Ann. Math. (2) 175:909–948. doi:https://doi.org/10.4007/annals.2012.175.2.9.
-
(2012)
Ann. Math. (2)
, vol.175
, pp. 909-948
-
-
Castro, Á.1
Córdoba, D.2
Fefferman, C.3
Gancedo, F.4
López-Fernández, M.5
-
8
-
-
84963877240
-
Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations
-
Castro, A., Córdoba, D., Gómez-Serrano, J., (2016). Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations. Duke Math. J. 165:935–984, doi:https://doi.org/10.1215/00127094-3449673(MR3482335).
-
(2016)
Duke Math. J.
, vol.165
, pp. 935-984
-
-
Castro, A.1
Córdoba, D.2
Gómez-Serrano, J.3
-
10
-
-
0000985293
-
Wave breaking for nonlinear nonlocal shallow water equations
-
Constantin, A., Escher, J., (1998). Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181:229–243, doi:https://doi.org/10.1007/BF02392586(MR1668586).
-
(1998)
Acta Math.
, vol.181
, pp. 229-243
-
-
Constantin, A.1
Escher, J.2
-
11
-
-
85006154598
-
On the Muskat problem: Global in time results in 2D and 3D
-
Constantin, P., Córdoba, D., Gancedo, F., Rodriguez-Piazza, L., Strain, R.M., (2016). On the Muskat problem:Global in time results in 2D and 3D. Am. J. Math. 138:1455–1494.
-
(2016)
Am. J. Math.
, vol.138
, pp. 1455-1494
-
-
Constantin, P.1
Córdoba, D.2
Gancedo, F.3
Rodriguez-Piazza, L.4
Strain, R.M.5
-
12
-
-
84870705750
-
On the global existence for the Muskat problem
-
Constantin, P., Córdoba, D., Gancedo, F., Strain, R.M., (2013). On the global existence for the Muskat problem. J. Eur. Math. Soc. (JEMS) 15:201–227, doi:https://doi.org/10.4171/JEMS/360.
-
(2013)
J. Eur. Math. Soc. (JEMS)
, vol.15
, pp. 201-227
-
-
Constantin, P.1
Córdoba, D.2
Gancedo, F.3
Strain, R.M.4
-
13
-
-
0003545358
-
-
Chicago, IL: University of Chicago Press
-
Constantin, P., Foias, C., (1988). Navier-Stokes Equation. Chicago Lectures in Mathematics, Chicago, IL:University of Chicago Press.
-
(1988)
Navier-Stokes Equation
-
-
Constantin, P.1
Foias, C.2
-
14
-
-
85027054086
-
-
Global regularity for 2D Muskat equations with finite slope. Preprint, ArXiv:1507.01386
-
Constantin, P., Gancedo, F., Shvydkoy, R., Vicol, V., Global regularity for 2D Muskat equations with finite slope. Preprint, ArXiv:1507.01386.
-
-
-
Constantin, P.1
Gancedo, F.2
Shvydkoy, R.3
Vicol, V.4
-
15
-
-
0000851461
-
Global solutions for small data to the Hele-Shaw problem
-
Constantin, P., Pugh, M., (1993). Global solutions for small data to the Hele-Shaw problem. Nonlinearity 6:393–415.
-
(1993)
Nonlinearity
, vol.6
, pp. 393-415
-
-
Constantin, P.1
Pugh, M.2
-
16
-
-
78751624212
-
Interface evolution: The Hele-Shaw and Muskat problems
-
Córdoba, A., Córdoba, D., Gancedo, F., (2011). Interface evolution:The Hele-Shaw and Muskat problems. Ann. Math. (2) 173:477–542. doi:https://doi.org/10.4007/annals.2011.173.1.10.
-
(2011)
Ann. Math. (2)
, vol.173
, pp. 477-542
-
-
Córdoba, A.1
Córdoba, D.2
Gancedo, F.3
-
17
-
-
84882688666
-
Porous media: The Muskat problem in three dimensions
-
Córdoba, A., Córdoba, D., Gancedo, F., (2013). Porous media:The Muskat problem in three dimensions. Anal. PDE 6:447–497. doi:https://doi.org/10.2140/apde.2013.6.447(MR3071395).
-
(2013)
Anal. PDE
, vol.6
, pp. 447-497
-
-
Córdoba, A.1
Córdoba, D.2
Gancedo, F.3
-
18
-
-
34249881893
-
Contour dynamics of incompressible 3-D fluids in a porous medium with different densities
-
Córdoba, D., Gancedo, F., (2007). Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Commun. Math. Phys. 273(2):445–471. doi:https://doi.org/10.1007/s00220-007-0246-y.
-
(2007)
Commun. Math. Phys.
, vol.273
, Issue.2
, pp. 445-471
-
-
Córdoba, D.1
Gancedo, F.2
-
19
-
-
58849109361
-
A maximum principle for the Muskat problem for fluids with different densities
-
Córdoba, D., Gancedo, F., (2009). A maximum principle for the Muskat problem for fluids with different densities. Commun. Math. Phys. 286:681–696, doi:https://doi.org/10.1007/s00220-008-0587-1(MR2472040).
-
(2009)
Commun. Math. Phys.
, vol.286
, pp. 681-696
-
-
Córdoba, D.1
Gancedo, F.2
-
20
-
-
79953645127
-
On the parabolicity of the Muskat problem: Well-posedness, fingering, and stability results
-
Escher, J., Matioc, B.-V., (2011). On the parabolicity of the Muskat problem:Well-posedness, fingering, and stability results. Z. Anal. Anwend. 30:193–218. doi:https://doi.org/10.4171/ZAA/1431(MR2793001).
-
(2011)
Z. Anal. Anwend.
, vol.30
, pp. 193-218
-
-
Escher, J.1
Matioc, B.-V.2
-
21
-
-
84892595836
-
No-splash theorems for fluid interfaces
-
Fefferman, C.L., (2014). No-splash theorems for fluid interfaces. Proc. Natl. Acad. Sci. USA 111:573–574. doi:https://doi.org/10.1073/pnas.1321805111.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 573-574
-
-
Fefferman, C.L.1
-
22
-
-
84958781337
-
On the absence of splash singularities in the case of two-fluid interfaces
-
Fefferman, C., Ionescu, A.D., Lie, V., (2016). On the absence of splash singularities in the case of two-fluid interfaces. Duke Math. J. 165:417–462. doi:https://doi.org/10.1215/00127094-3166629.
-
(2016)
Duke Math. J.
, vol.165
, pp. 417-462
-
-
Fefferman, C.1
Ionescu, A.D.2
Lie, V.3
-
23
-
-
39749086442
-
Existence for the α-patch model and the QG sharp front in Sobolev spaces
-
Gancedo, F., (2008). Existence for the α-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217:2569–2598. doi:https://doi.org/10.1016/j.aim.2007.10.010.
-
(2008)
Adv. Math.
, vol.217
, pp. 2569-2598
-
-
Gancedo, F.1
-
24
-
-
84892577446
-
Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem
-
Gancedo, F., Strain, R.M., (2014). Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem. Proc. Natl. Acad. Sci. USA 111:635–639. doi:https://doi.org/10.1073/pnas.1320554111.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 635-639
-
-
Gancedo, F.1
Strain, R.M.2
-
25
-
-
84902663105
-
Global existence for the confined Muskat problem
-
Granero-Belinchón, R., (2014). Global existence for the confined Muskat problem. SIAM J. Math. Anal. 46:1651–1680.
-
(2014)
SIAM J. Math. Anal.
, vol.46
, pp. 1651-1680
-
-
Granero-Belinchón, R.1
-
26
-
-
33749026600
-
The flow of water
-
Hele-Shaw, H.S., (1898). The flow of water. Nature 58:34–36.
-
(1898)
Nature
, vol.58
, pp. 34-36
-
-
Hele-Shaw, H.S.1
-
27
-
-
0008283862
-
Removing the stiffness from interfacial flows with surface tension
-
Hou, T.Y., Lowengrub, J.S., Shelley, M.J., (1994). Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114:312–338. doi:https://doi.org/10.1006/jcph.1994.1170.
-
(1994)
J. Comput. Phys.
, vol.114
, pp. 312-338
-
-
Hou, T.Y.1
Lowengrub, J.S.2
Shelley, M.J.3
-
29
-
-
0001383598
-
The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid
-
(2 plates)
-
Saffman, P.G., Taylor, G., (1958). The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. London. Ser. A 245:312–329 (2 plates).
-
(1958)
Proc. R. Soc. London. Ser. A
, vol.245
, pp. 312-329
-
-
Saffman, P.G.1
Taylor, G.2
-
30
-
-
4544228729
-
Global existence, singular solutions, and ill-posedness for the Muskat problem
-
Siegel, M., Caflisch, R.E., Howison, S., (2004). Global existence, singular solutions, and ill-posedness for the Muskat problem. Commun. Pure Appl. Math. 57:1374–1411, doi:https://doi.org/10.1002/cpa.20040.
-
(2004)
Commun. Pure Appl. Math.
, vol.57
, pp. 1374-1411
-
-
Siegel, M.1
Caflisch, R.E.2
Howison, S.3
-
31
-
-
84901297547
-
-
The Boltzmann equation, Besov spaces, and optimal time decay rates in
-
Sohinger, V., Strain, R.M., (2014). The Boltzmann equation, Besov spaces, and optimal time decay rates in. Adv. Math. 261:274–332. doi:https://doi.org/10.1016/j.aim.2014.04.012.
-
(2014)
Adv. Math.
, vol.261
, pp. 274-332
-
-
Sohinger, V.1
Strain, R.M.2
|