메뉴 건너뛰기




Volumn , Issue , 2017, Pages 377-392

Live video analytics at scale with approximation and delay-tolerance

Author keywords

[No Author keywords available]

Indexed keywords

SYSTEMS ANALYSIS;

EID: 85076880182     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (369)

References (89)
  • 1
    • 85080481701 scopus 로고    scopus 로고
    • Alert, U.S. Department of Justice
    • AMBER Alert, U.S. Department of Justice. http://www.amberalert.gov/faqs.htm.
  • 2
    • 85080474494 scopus 로고    scopus 로고
    • Apache Flink. https://flink.apache.org/.
  • 4
    • 84904332358 scopus 로고    scopus 로고
    • Apache Storm. https://storm.apache.org/.
    • Apache Storm
  • 5
    • 85080496620 scopus 로고    scopus 로고
    • Avigilon. http://avigilon.com/products/.
    • Avigilon
  • 6
    • 85080495036 scopus 로고    scopus 로고
    • Azure Instances. https://azure.microsoft.com/en-us/pricing/details/virtual-machines/.
  • 7
    • 84875733904 scopus 로고    scopus 로고
    • Capacity Scheduler. https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarnsite/CapacityScheduler.html.
    • Capacity Scheduler
  • 9
    • 85080480492 scopus 로고    scopus 로고
    • Genetec. https://www.genetec.com/.
  • 10
    • 84880207545 scopus 로고    scopus 로고
    • Hadoop Fair Scheduler. https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarnsite/FairScheduler.html.
    • Hadoop Fair Scheduler
  • 13
    • 85080581091 scopus 로고    scopus 로고
    • Open ALPR. http://www.openalpr.com.
  • 16
    • 85080501083 scopus 로고    scopus 로고
    • SR 520 Bridge Tolling, WA. https://www.wsdot.wa.gov/Tolling/520/default.htm.
    • SR 520 Bridge Tolling
  • 18
    • 85076924331 scopus 로고    scopus 로고
    • Windows Job Objects. https://msdn.microsoft.com/en-us/library/windows/desktop/ ms684161(v=vs.85).aspx.
    • Windows Job Objects
  • 19
    • 34547285007 scopus 로고    scopus 로고
    • The design of the Borealis stream processing engine
    • Jan
    • D. J. Abadi et al. The Design of the Borealis Stream Processing Engine. In CIDR, Jan. 2005.
    • (2005) CIDR
    • Abadi, D.J.1
  • 20
    • 84877703682 scopus 로고    scopus 로고
    • BlinkDB: Queries with bounded errors and bounded response times on very large data
    • M. H, Apr
    • S. Agarwal, B. Mozafari, A. Panda, M. H., S. Madden, and I. Stoica. BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very Large Data. In ACM EuroSys, Apr. 2013.
    • (2013) ACM EuroSys
    • Agarwal, S.1    Mozafari, B.2    Panda, A.3    Madden, S.4    Stoica, I.5
  • 21
    • 84953855877 scopus 로고    scopus 로고
    • The dataflow model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-order Data Processing
    • Aug
    • T. Akidau et al. The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-order Data Processing. Proceedings of the VLDB Endowment, Aug. 2015.
    • (2015) Proceedings of the VLDB Endowment
    • Akidau, T.1
  • 25
    • 34250655127 scopus 로고    scopus 로고
    • Load shedding for aggregation queries over data streams
    • Mar
    • B. Babcock, M. Datar, and R. Motwani. Load Shedding for Aggregation Queries over Data Streams. In IEEE ICDE, Mar. 2004.
    • (2004) IEEE ICDE
    • Babcock, B.1    Datar, M.2    Motwani, R.3
  • 26
    • 77954894902 scopus 로고    scopus 로고
    • Energy efficient resource management in virtualized cloud data centers
    • May
    • A. Beloglazov and R. Buyya. Energy Efficient Resource Management in Virtualized Cloud Data Centers. In IEEE CCGRID, May 2010.
    • (2010) IEEE CCGRID
    • Beloglazov, A.1    Buyya, R.2
  • 28
    • 84863373906 scopus 로고    scopus 로고
    • Visual exploration and incremental utility elicitation
    • July
    • J. Blythe. Visual Exploration and Incremental Utility Elicitation. In AAAI, July 2002.
    • (2002) AAAI
    • Blythe, J.1
  • 30
    • 84880730902 scopus 로고    scopus 로고
    • Regret-based Utility Elicitation in Constraint-based Decision Problems
    • C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans. Regret-based Utility Elicitation in Constraint-based Decision Problems. In IJCAI, 2005.
    • (2005) IJCAI
    • Boutilier, C.1    Patrascu, R.2    Poupart, P.3    Schuurmans, D.4
  • 32
    • 84867027417 scopus 로고    scopus 로고
    • Windows Azure storage: A highly available cloud storage service with strong consistency
    • B. Calder et al. Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency. In ACM SOSP, 2011.
    • (2011) ACM SOSP
    • Calder, B.1
  • 35
    • 85158134596 scopus 로고    scopus 로고
    • Making rational decisions using adaptive utility elicitation
    • U. Chajewska, D. Koller, and R. Parr. Making Rational Decisions Using Adaptive Utility Elicitation. In AAAI, 2000.
    • (2000) AAAI
    • Chajewska, U.1    Koller, D.2    Parr, R.3
  • 40
    • 0001366593 scopus 로고
    • Discrete-variable extremum problems
    • G. B. Dantzig. Discrete-Variable Extremum Problems. Operations Research 5 (2): 266288, 1957.
    • (1957) Operations Research , vol.5 , Issue.2 , pp. 266288
    • Dantzig, G.B.1
  • 45
    • 84965175092 scopus 로고    scopus 로고
    • Deep compression: Compressing deep neural network with pruning, trained quantization and Huffman coding
    • Nov
    • S. Han, H. Mao, and W. J. Dally. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding. Computing Research Repository, Nov. 2015.
    • (2015) Computing Research Repository
    • Han, S.1    Mao, H.2    Dally, W.J.3
  • 46
    • 84979939317 scopus 로고    scopus 로고
    • McDNN: An approximation-based execution framework for deep stream processing under resource constraints
    • S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy. MCDNN: An Approximation-Based Execution Framework for Deep Stream Processing Under Resource Constraints. In ACM MobiSys, 2016.
    • (2016) ACM MobiSys
    • Han, S.1    Shen, H.2    Philipose, M.3    Agarwal, S.4    Wolman, A.5    Krishnamurthy, A.6
  • 55
    • 5544317207 scopus 로고    scopus 로고
    • Efficiency loss in a network resource allocation game
    • R. Johari and J. N. Tsitsiklis. Efficiency Loss in a Network Resource Allocation Game. Mathematics of Operations Research, 29(3):407–435, 2004.
    • (2004) Mathematics of Operations Research , vol.29 , Issue.3 , pp. 407-435
    • Johari, R.1    Tsitsiklis, J.N.2
  • 57
    • 0032027247 scopus 로고    scopus 로고
    • Rate control for communication networks: Shadow prices, proportional fairness and stability
    • F. P. Kelly, A. K. Maulloo, and D. K. Tan. Rate Control for Communication Networks: Shadow Prices, Proportional Fairness and Stability. Journal of the Operational Research Society, 49(3):237–252, 1998.
    • (1998) Journal of the Operational Research Society , vol.49 , Issue.3 , pp. 237-252
    • Kelly, F.P.1    Maulloo, A.K.2    Tan, D.K.3
  • 58
    • 85080556358 scopus 로고    scopus 로고
    • Research challenges of autonomic computing
    • J. O. Kephart. Research Challenges of Autonomic Computing. In ACM ICSE, 2005.
    • (2005) ACM ICSE
    • Kephart, J.O.1
  • 60
    • 85080554301 scopus 로고    scopus 로고
    • Distributed stream management using utility-driven self-adaptive middleware
    • V. Kumar, B. F. Cooper, and K. Schwan. Distributed Stream Management Using Utility-Driven Self-Adaptive Middleware. In IEEE ICAC, 2005.
    • (2005) IEEE ICAC
    • Kumar, V.1    Cooper, B.F.2    Schwan, K.3
  • 62
    • 85020418471 scopus 로고    scopus 로고
    • StreamScope: Continuous reliable distributed processing of big data streams
    • Mar
    • W. Lin, Z. Qian, J. Xu, S. Yang, J. Zhou, and L. Zhou. StreamScope: Continuous Reliable Distributed Processing of Big Data Streams. In USENIX NSDI, Mar. 2016.
    • (2016) USENIX NSDI
    • Lin, W.1    Qian, Z.2    Xu, J.3    Yang, S.4    Zhou, J.5    Zhou, L.6
  • 63
    • 0033355765 scopus 로고    scopus 로고
    • Optimization flow control-I: Basic algorithm and convergence
    • S. H. Low and D. E. Lapsley. Optimization Flow Control-I: Basic Algorithm and Convergence. IEEE/ACM Transactions on Networking, 7(6):861–874, 1999.
    • (1999) IEEE/ACM Transactions on Networking , vol.7 , Issue.6 , pp. 861-874
    • Low, S.H.1    Lapsley, D.E.2
  • 64
    • 0036346349 scopus 로고    scopus 로고
    • Priority service and max-min fairness
    • P. Marbach. Priority Service and Max-Min Fairness. In IEEE INFOCOM, 2002.
    • (2002) IEEE INFOCOM
    • Marbach, P.1
  • 67
    • 0033135677 scopus 로고    scopus 로고
    • Model predictive control: Past, present and future
    • M. Morari and J. H. Lee. Model Predictive Control: Past, Present and Future. Computers & Chemical Engineering, 23(4):667–682, 1999.
    • (1999) Computers & Chemical Engineering , vol.23 , Issue.4 , pp. 667-682
    • Morari, M.1    Lee, J.H.2
  • 69
    • 84996809841 scopus 로고    scopus 로고
    • Learning multi-domain convolutional neural networks for visual tracking
    • abs/1510.07945
    • H. Nam and B. Han. Learning Multi-Domain Convolutional Neural Networks for Visual Tracking. Computing Research Repository, abs/1510.07945, 2015.
    • (2015) Computing Research Repository
    • Nam, H.1    Han, B.2
  • 72
    • 84944341454 scopus 로고    scopus 로고
    • Aggregation and degradation in Jetstream: Streaming analytics in the wide area
    • A. Rabkin, M. Arye, S. Sen, V. Pai, and M. Freedman. Aggregation and Degradation in JetStream: Streaming Analytics in the Wide Area. In USENIX NSDI, 2014.
    • (2014) USENIX NSDI
    • Rabkin, A.1    Arye, M.2    Sen, S.3    Pai, V.4    Freedman, M.5
  • 73
    • 0000648926 scopus 로고
    • Cost-benefit models for explaining consumer choice and information seeking behavior
    • B. T. Ratchford. Cost-Benefit Models for Explaining Consumer Choice and Information Seeking Behavior. Management Science, 28, 1982.
    • (1982) Management Science , vol.28
    • Ratchford, B.T.1
  • 75
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • abs/1409.1556
    • K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. Computing Research Repository, abs/1409.1556, 2014.
    • (2014) Computing Research Repository
    • Simonyan, K.1    Zisserman, A.2
  • 76
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of machine learning algorithms
    • Dec
    • J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of Machine Learning Algorithms. In NIPS, Dec. 2012.
    • (2012) NIPS
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 78
    • 85008877455 scopus 로고    scopus 로고
    • Staying fit: Efficient load shedding techniques for distributed stream processing
    • N. Tatbul, U. Çetintemel, and S. Zdonik. Staying Fit: Efficient Load Shedding Techniques for Distributed Stream Processing. In VLDB, 2007.
    • (2007) VLDB
    • Tatbul, N.1    Çetintemel, U.2    Zdonik, S.3
  • 80
    • 33745506664 scopus 로고    scopus 로고
    • Utility-function-driven resource allocation in autonomic systems
    • G. Tesauro, R. Das, W. E. Walsh, and J. O. Kephart. Utility-Function-Driven Resource Allocation in Autonomic Systems. In ICAC, 2005.
    • (2005) ICAC
    • Tesauro, G.1    Das, R.2    Walsh, W.E.3    Kephart, J.O.4
  • 82
    • 84963927002 scopus 로고    scopus 로고
    • Load shedding in stream databases: A control-based approach
    • Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load Shedding in Stream Databases: a Control-Based Approach. In VLDB, 2006.
    • (2006) VLDB
    • Tu, Y.-C.1    Liu, S.2    Prabhakar, S.3    Yao, B.4
  • 85
    • 79960196705 scopus 로고    scopus 로고
    • Aria: Automatic resource inference and allocation for MapReduce environments
    • A. Verma, L. Cherkasova, and R. H. Campbell. ARIA: Automatic Resource Inference and Allocation for Mapreduce Environments. In ICAC, 2011.
    • (2011) ICAC
    • Verma, A.1    Cherkasova, L.2    Campbell, R.H.3
  • 88
    • 85080601844 scopus 로고    scopus 로고
    • Prediction-based QoS management for real-time data streams
    • Y. Wei, V. Prasad, S. H. Son, and J. A. Stankovic. Prediction-Based QoS Management for Real-Time Data Streams. In IEEE RTSS, 2006.
    • (2006) IEEE RTSS
    • Wei, Y.1    Prasad, V.2    Son, S.H.3    Stankovic, J.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.