-
1
-
-
85074271808
-
-
UN, World Population Prospects 2017
-
UN, World Population Prospects 2017 (2017); https://population.un.org/wpp/DVD/Files/2_Indicators%20(Probabilistic%20Projections)/UN_PPP2017_Output_PopTot.xls.
-
(2017)
-
-
-
2
-
-
85074288812
-
-
BNEF, NEO 2018 presentation at CSIS
-
BNEF, NEO 2018 presentation at CSIS (2018); https://about. bnef.com/blog/neo-2018-presentation-csis/.
-
(2018)
-
-
-
3
-
-
85074300061
-
-
International Energy Agency (IEA), "World energy outlook 2018" (Tech. Rep., IEA
-
International Energy Agency (IEA), "World energy outlook 2018" (Tech. Rep., IEA, 2018); www.iea.org/weo2018/.
-
(2018)
-
-
-
4
-
-
85071636254
-
-
BNEF
-
BNEF, "New energy outlook 2019" (2019); https://about. bnef.com/new-energy-outlook/.
-
(2019)
New Energy Outlook 2019
-
-
-
5
-
-
85006366442
-
-
BP Energy Economics
-
BP Energy Economics, "BP Energy Outlook: 2018 edition" (2018); www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018.pdf.
-
(2018)
BP Energy Outlook: 2018 Edition
-
-
-
7
-
-
85074289667
-
-
Global Wind Energy Council
-
Global Wind Energy Council, "51.3 GW of global wind capacity installed in 2018" (2019); https://gwec.net/51-3-gw-ofglobal-wind-capacity-installed-in-2018/.
-
(2019)
51.3 GW of Global Wind Capacity Installed in 2018
-
-
-
8
-
-
85052669447
-
-
Tech. Rep. NREL/TP-6A20-70032, NREL
-
T. Mai, E. Lantz, M. Mowers, R. Wiser, "The value of wind technology innovation: Implications for the U.S. power system, wind industry, electricity consumers, and environment" (Tech. Rep. NREL/TP-6A20-70032, NREL, 2017); www.nrel.gov/docs/fy17osti/70032.pdf.
-
(2017)
The Value of Wind Technology Innovation: Implications for the U.S. Power System, Wind Industry, Electricity Consumers, and Environment
-
-
Mai, T.1
Lantz, E.2
Mowers, M.3
Wiser, R.4
-
9
-
-
85050679276
-
-
International Renewable Energy Agency (IRENA), (IRENA
-
International Renewable Energy Agency (IRENA), "Global energy transformation: A roadmap to 2050" (IRENA, 2018); www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_Report_GET_2018.pdf.
-
(2018)
Global Energy Transformation: A Roadmap to 2050
-
-
-
10
-
-
84960121106
-
The evolution of the market: Designing a market for high levels of variable generation
-
M. Ahlstrom et al., The evolution of the market: Designing a market for high levels of variable generation. IEEE Power Energy Mag. 13, 60-66 (2015). doi: 10.1109/MPE.2015.2458755
-
(2015)
IEEE Power Energy Mag.
, vol.13
, pp. 60-66
-
-
Ahlstrom, M.1
-
11
-
-
85017617268
-
Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy
-
B. Kroposki et al., Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy. IEEE Power Energy Mag. 15, 61-73 (2017). doi: 10.1109/MPE.2016.2637122
-
(2017)
IEEE Power Energy Mag.
, vol.15
, pp. 61-73
-
-
Kroposki, B.1
-
12
-
-
85036458521
-
Paving the way: A future without inertia is closer than you think
-
T. Ackermann et al., Paving the Way: A Future Without Inertia Is Closer Than You Think. IEEE Power Energy Mag. 15, 61-69 (2017). doi: 10.1109/MPE.2017.2729138
-
(2017)
IEEE Power Energy Mag.
, vol.15
, pp. 61-69
-
-
Ackermann, T.1
-
13
-
-
85054080265
-
Inter-sectoral effects of high renewable energy share in global energy system
-
E. Pursiheimo, H. Holttinen, T. Koljonen, Inter-sectoral effects of high renewable energy share in global energy system. Renew. Energy 136, 1119-1129 (2019). doi: 10.1016/j.renene.2018.09.082
-
(2019)
Renew. Energy
, vol.136
, pp. 1119-1129
-
-
Pursiheimo, E.1
Holttinen, H.2
Koljonen, T.3
-
14
-
-
84959561581
-
Alternatives no more: Wind and solar power are mainstays of a clean, reliable, affordable grid
-
M. B. Milligan et al., Alternatives No More: Wind and Solar Power Are Mainstays of a Clean, Reliable, Affordable Grid. IEEE Power Energy Mag. 13, 78-87 (2015). doi: 10.1109/MPE.2015.2462311
-
(2015)
IEEE Power Energy Mag.
, vol.13
, pp. 78-87
-
-
Milligan, M.B.1
-
15
-
-
85074288593
-
-
Converter dominated" refers to a grid system largely composed of converter-based generation technologies (such as wind and solar) that convert ac to dc, which can then be fed to the larger system via dc transmission or inverted back to ac to feed a larger ac system
-
"Converter dominated" refers to a grid system largely composed of converter-based generation technologies (such as wind and solar) that convert ac to dc, which can then be fed to the larger system via dc transmission or inverted back to ac to feed a larger ac system.
-
-
-
-
21
-
-
20044387646
-
Trends in the design, manufacture and evaluation of wind turbine blades
-
P. S. Veers et al., Trends in the design, manufacture and evaluation of wind turbine blades. Wind Energy 6, 245-259 (2003). doi: 10.1002/we.90
-
(2003)
Wind Energy
, vol.6
, pp. 245-259
-
-
Veers, P.S.1
-
23
-
-
85026489852
-
Effects of aeroelastic tailoring on performance characteristics of wind turbine systems
-
S. Scott et al., Effects of aeroelastic tailoring on performance characteristics of wind turbine systems. Renew. Energy 114, 887-903 (2017). doi: 10.1016/j.renene.2017.06.048
-
(2017)
Renew. Energy
, vol.114
, pp. 887-903
-
-
Scott, S.1
-
24
-
-
85052940284
-
Integration of multiple passive load mitigation technologies by automated design optimization-The case study of a medium-size onshore wind turbine
-
P. Bortolotti, C. L. Bottasso, A. Croce, L. Sartori, Integration of Multiple Passive Load Mitigation Technologies by Automated Design Optimization-The Case Study of a Medium-Size Onshore Wind Turbine. Wind Energy 22, 65-79 (2019). doi: 10.1002/we.2270
-
(2019)
Wind Energy
, vol.22
, pp. 65-79
-
-
Bortolotti, P.1
Bottasso, C.L.2
Croce, A.3
Sartori, L.4
-
27
-
-
85074299688
-
-
Many technology innovation pathways, including concepts such as airborne wind turbines, were discussed and documented in the International Energy Agency Grand Wind Workshop report. Progress on the grand challenges is essential to enabling such technology configurations. However, the focus of this article is on major breakthroughs, even with power plants comprising standard horizontal-axis wind turbines
-
Many technology innovation pathways, including concepts such as airborne wind turbines, were discussed and documented in the International Energy Agency Grand Wind Workshop report. Progress on the grand challenges is essential to enabling such technology configurations. However, the focus of this article is on major breakthroughs, even with power plants comprising standard horizontal-axis wind turbines.
-
-
-
-
28
-
-
0028481033
-
The spatial structure of neutral atmospheric surface-layer turbulence
-
J. Mann, The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech. 273, 141-168 (1994). doi: 10.1017/S0022112094001886
-
(1994)
J. Fluid Mech.
, vol.273
, pp. 141-168
-
-
Mann, J.1
-
29
-
-
84964522837
-
Spectral characteristics of surface-layer turbulence
-
J. C. Kaimal, J. C. Wyngaard, Y. Izumi, O. R. Coté, Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 98, 563-589 (1972). doi: 10.1002/qj.49709841707
-
(1972)
Q. J. R. Meteorol. Soc.
, vol.98
, pp. 563-589
-
-
Kaimal, J.C.1
Wyngaard, J.C.2
Izumi, Y.3
Coté, O.R.4
-
30
-
-
85074283158
-
-
Report no. SAND-88-0152C, CONF-890102-9, Sandia National Laboratories
-
P. S. Veers, "Three-dimensional wind simulation" (Report no. SAND-88-0152C, CONF-890102-9, Sandia National Laboratories, 1988); https://prod-ng.sandia.gov/techlibnoauth/access-control.cgi/1988/880152.pdf.
-
(1988)
Three-dimensional Wind Simulation
-
-
Veers, P.S.1
-
31
-
-
4344617845
-
Toward Numerical Modeling in the "terra Incognita"
-
J. C. Wyngaard, Toward Numerical Modeling in the "Terra Incognita". J. Atmos. Sci. 61, 1816-1826 (2004). doi: 10.1175/1520-0469(2004)0611816:TNMITT2.0.CO;2
-
(2004)
J. Atmos. Sci.
, vol.61
, pp. 1816-1826
-
-
Wyngaard, J.C.1
-
32
-
-
85055574246
-
Variation of boundary-layer wind spectra with height
-
X. G. Larsén, E. L. Petersen, S. E. Larsen, Variation of boundary-layer wind spectra with height. Q. J. R. Meteorol. Soc. 144, 2054-2066 (2018). doi: 10.1002/qj.3301
-
(2018)
Q. J. R. Meteorol. Soc.
, vol.144
, pp. 2054-2066
-
-
Larsén, X.G.1
Petersen, E.L.2
Larsen, S.E.3
-
33
-
-
84984674363
-
Mesoscale to microscale wind farm modeling and evaluation
-
J. S. Sanz Rodrigo et al., Mesoscale to microscale wind farm modeling and evaluation. WIREs Energy Environ. 6, e214 (2017). doi: 10.1002/wene.214
-
(2017)
WIREs Energy Environ.
, vol.6
, pp. e214
-
-
Sanz Rodrigo, J.S.1
-
34
-
-
85015831994
-
Complex terrain experiments in the New European Wind Atlas
-
PMID: 28265025
-
J. Mann et al., Complex terrain experiments in the New European Wind Atlas. Philos. Trans. R. Soc. A 375, 20160101 (2017). doi: 10.1098/rsta.2016.0101; pmid: 28265025
-
(2017)
Philos. Trans. R. Soc. A
, vol.375
, pp. 20160101
-
-
Mann, J.1
-
35
-
-
84878742677
-
Crop wind energy experiment (cwex): Observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm
-
D. A. Rajewski et al., Crop Wind Energy Experiment (CWEX): Observations of Surface-Layer, Boundary Layer, and Mesoscale Interactions with a Wind Farm. Bull. Am. Meteorol. Soc. 94, 655-672 (2013). doi: 10.1175/BAMS-D-11-00240.1
-
(2013)
Bull. Am. Meteorol. Soc.
, vol.94
, pp. 655-672
-
-
Rajewski, D.A.1
-
36
-
-
85044870239
-
Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain
-
X. Han, D. Liu, C. Xu, W. Z. Shen, Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain. Renew. Energy 126, 640-651 (2018). doi: 10.1016/j.renene.2018.03.048
-
(2018)
Renew. Energy
, vol.126
, pp. 640-651
-
-
Han, X.1
Liu, D.2
Xu, C.3
Shen, W.Z.4
-
37
-
-
85009268680
-
Improving wind predictions in the marine atmospheric boundary layer through parameter estimation in a single-column model
-
J. A. Lee et al., Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model. Mon. Weather Rev. 145, 5-24 (2017). doi: 10.1175/MWR-D-16-0063.1
-
(2017)
Mon. Weather Rev.
, vol.145
, pp. 5-24
-
-
Lee, J.A.1
-
38
-
-
84875429928
-
Large eddy simulations of fully developed wind-turbine array boundary layers
-
M. Calaf, C. Meneveau, J. Meyers, Large eddy simulations of fully developed wind-turbine array boundary layers. Phys. Fluids 22, 015110 (2010). doi: 10.1063/1.3291077
-
(2010)
Phys. Fluids
, vol.22
, pp. 015110
-
-
Calaf, M.1
Meneveau, C.2
Meyers, J.3
-
39
-
-
85049695530
-
Wake behind an offshore wind farm observed with dual-Doppler radars
-
N. G. Nygaard, A. C. Newcombe, Wake behind an offshore wind farm observed with dual-Doppler radars. J. Phys. Conf. Ser. 1037, 072008 (2018);.doi: 10.1088/1742-6596/1037/7/072008
-
(2018)
J. Phys. Conf. Ser.
, vol.1037
, pp. 072008
-
-
Nygaard, N.G.1
Newcombe, A.C.2
-
40
-
-
85009110249
-
Flow structure and turbulence in wind farms
-
R. J. A. M. Stevens, C. Meneveau, Flow Structure and Turbulence in Wind Farms. Annu. Rev. Fluid Mech. 49, 311-339 (2017). doi: 10.1146/annurev-fluid-010816-060206
-
(2017)
Annu. Rev. Fluid Mech.
, vol.49
, pp. 311-339
-
-
Stevens, R.J.A.M.1
Meneveau, C.2
-
41
-
-
9244246787
-
The influence of large-scale wind power on global climate
-
PMID: 15536131
-
D. W. Keith et al., The influence of large-scale wind power on global climate. Proc. Natl. Acad. Sci. U.S.A. 101, 16115-16120 (2004). doi: 10.1073/pnas.0406930101; pmid: 15536131
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 16115-16120
-
-
Keith, D.W.1
-
42
-
-
84867977160
-
Local and mesoscale impacts of wind farms as parameterized in a mesoscale nwp model
-
A. C. Fitch et al., Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model. Mon. Weather Rev. 140, 3017-3038 (2012). doi: 10.1175/MWR-D-11-00352.1
-
(2012)
Mon. Weather Rev.
, vol.140
, pp. 3017-3038
-
-
Fitch, A.C.1
-
43
-
-
84948157760
-
The explicit wake parametrisation v1.0: A wind farm parametrisation in the mesoscale model wrf
-
P. J. H. Volker, J. Badger, A. N. Hahmann, S. Ott, The Explicit Wake Parametrisation V1.0: A wind farm parametrisation in the mesoscale model WRF. Geosci. Model Dev. 8, 3715-3731 (2015). doi: 10.5194/gmd-8-3715-2015
-
(2015)
Geosci. Model Dev.
, vol.8
, pp. 3715-3731
-
-
Volker, P.J.H.1
Badger, J.2
Hahmann, A.N.3
Ott, S.4
-
44
-
-
84964608747
-
Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation
-
A. Armstrong et al., Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation. Environ. Res. Lett. 11, 044024 (2016). doi: 10.1088/1748-9326/11/4/044024
-
(2016)
Environ. Res. Lett.
, vol.11
, pp. 044024
-
-
Armstrong, A.1
-
45
-
-
85035057347
-
Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data
-
J. C. Y. Lee, J. K. Lundquist, Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data. Geosci. Model Dev. 10, 4229-4244 (2017). doi: 10.5194/gmd-10-4229-2017
-
(2017)
Geosci. Model Dev.
, vol.10
, pp. 4229-4244
-
-
Lee, J.C.Y.1
Lundquist, J.K.2
-
46
-
-
85041628660
-
First in situ evidence of wakes in the far field behind offshore wind farms
-
PMID: 29391440
-
A. Platis et al., First in situ evidence of wakes in the far field behind offshore wind farms. Sci. Rep. 8, 2163 (2018). doi: 10.1038/s41598-018-20389-y; pmid: 29391440
-
(2018)
Sci. Rep.
, vol.8
, pp. 2163
-
-
Platis, A.1
-
47
-
-
85060125579
-
Micrometeorological Impacts of Offshore Wind Farms as seen in Observations and Simulations
-
S. K. Siedersleben et al., Micrometeorological Impacts of Offshore Wind Farms as seen in Observations and Simulations. Environ. Res. Lett. 13, 124012 (2018). doi: 10.1088/1748-9326/aaea0b
-
(2018)
Environ. Res. Lett.
, vol.13
, pp. 124012
-
-
Siedersleben, S.K.1
-
48
-
-
84866852922
-
Saturation wind power potential and its implications for wind energy
-
PMID: 23019353
-
M. Z. Jacobson, C. L. Archer, Saturation wind power potential and its implications for wind energy. Proc. Natl. Acad. Sci. U.S.A. 109, 15679-15684 (2012). doi: 10.1073/pnas.1208993109; pmid: 23019353
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 15679-15684
-
-
Jacobson, M.Z.1
Archer, C.L.2
-
49
-
-
84876167428
-
Are global wind power resource estimates overstated?
-
A. S. Adams, D. W. Keith, Are global wind power resource estimates overstated? Environ. Res. Lett. 8, 015021 (2013). doi: 10.1088/1748-9326/8/1/015021
-
(2013)
Environ. Res. Lett.
, vol.8
, pp. 015021
-
-
Adams, A.S.1
Keith, D.W.2
-
50
-
-
84880716408
-
Mesoscale influences of wind farms throughout a diurnal cycle
-
A. C. Fitch, J. K. Lundquist, J. B. Olson, Mesoscale Influences of Wind Farms throughout a Diurnal Cycle. Mon. Weather Rev. 141, 2173-2198 (2013). doi: 10.1175/MWR-D-12-00185.1
-
(2013)
Mon. Weather Rev.
, vol.141
, pp. 2173-2198
-
-
Fitch, A.C.1
Lundquist, J.K.2
Olson, J.B.3
-
51
-
-
85057347113
-
Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development
-
J. K. Lundquist, K. K. DuVivier, D. Kaffine, J. M. Tomaszewski, Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development. Nat. Energy 4, 26-34 (2019). doi: 10.1038/s41560-018-0281-2
-
(2019)
Nat. Energy
, vol.4
, pp. 26-34
-
-
Lundquist, J.K.1
DuVivier, K.K.2
Kaffine, D.3
Tomaszewski, J.M.4
-
52
-
-
85037693865
-
Southward shift of the global wind energy resource under high carbon dioxide emissions
-
K. B. Karnauskas, J. K. Lundquist, L. Zhang, Southward shift of the global wind energy resource under high carbon dioxide emissions. Nat. Geosci. 11, 38-43 (2018). doi: 10.1038/s41561-017-0029-9
-
(2018)
Nat. Geosci.
, vol.11
, pp. 38-43
-
-
Karnauskas, K.B.1
Lundquist, J.K.2
Zhang, L.3
-
53
-
-
84885660049
-
Meteorology for coastal/offshore wind energy in the United States: Recommendations and research needs for the next 10 years
-
C. L. Archer et al., Meteorology for coastal/offshore wind energy in the United States: Recommendations and research needs for the next 10 years. Bull. Am. Meteorol. Soc. 95, 515-519 (2014). doi: 10.1175/BAMS-D-13-00108.1
-
(2014)
Bull. Am. Meteorol. Soc.
, vol.95
, pp. 515-519
-
-
Archer, C.L.1
-
54
-
-
85062355540
-
Big wind power: Seven questions for turbulence research
-
C. Meneveau, Big wind power: Seven questions for turbulence research. J. Turbul. 20, 2-20 (2019). doi: 10.1080/14685248.2019.1584664
-
(2019)
J. Turbul.
, vol.20
, pp. 2-20
-
-
Meneveau, C.1
-
55
-
-
84898853205
-
Quantifying wind turbine wake characteristics from scanning remote sensor data
-
M. L. Aitken, R. M. Banta, Y. L. Pichugina, J. K. Lundquist, Quantifying wind turbine wake characteristics from scanning remote sensor data. J. Oceanic Atmos. Technol. 31, 765-787 (2014). doi: 10.1175/JTECH-D-13-00104.1
-
(2014)
J. Oceanic Atmos. Technol.
, vol.31
, pp. 765-787
-
-
Aitken, M.L.1
Banta, R.M.2
Pichugina, Y.L.3
Lundquist, J.K.4
-
56
-
-
84907667035
-
-
DTU Wind Energy-E-Report-0084, Denmark Technical University
-
A. Peña, C. B. Hasager, M. Badger, R. J. Barthelmie, F. Bingöl, J.-P. Cariou, S. Emeis, S. T. Frandsen, M. Harris, I. Karagali, S. E. Larsen, J. Mann, T. Mikkelsen, M. Pitter, S. C. Pryor, A. Sathe, D. Schlipf, C. Slinger, R. Wagner, "Remote sensing for wind energy" (DTU Wind Energy-E-Report-0084, Denmark Technical University, 2015); https://orbit.dtu.dk/files/111814239/DTU_Wind_Energy_Report_E_0084.pdf.
-
(2015)
Remote Sensing for Wind Energy
-
-
Peña, A.1
Hasager, C.B.2
Badger, M.3
Barthelmie, R.J.4
Bingöl, F.5
Cariou, J.-P.6
Emeis, S.7
Frandsen, S.T.8
Harris, M.9
Karagali, I.10
Larsen, S.E.11
Mann, J.12
Mikkelsen, T.13
Pitter, M.14
Pryor, S.C.15
Sathe, A.16
Schlipf, D.17
Slinger, C.18
Wagner, R.19
-
57
-
-
85044245693
-
IEA wind task 32: Wind lidar identifying and mitigating barriers to the adoption of wind lidar
-
A. Clifton et al., IEA Wind Task 32: Wind Lidar Identifying and Mitigating Barriers to the Adoption of Wind Lidar. Remote Sens. 10, 406 (2018). doi: 10.3390/rs10030406
-
(2018)
Remote Sens.
, vol.10
, pp. 406
-
-
Clifton, A.1
-
58
-
-
84864775790
-
Measuring a utility-scale turbine wake using the ttuka mobile research radars
-
B. D. Hirth, J. L. Schroeder, W. S. Gunter, J. G. Guynes, Measuring a Utility-Scale Turbine Wake Using the TTUKa Mobile Research Radars. J. Atmos. Ocean. Technol. 29, 765-771 (2012). doi: 10.1175/JTECH-D-12-00039.1
-
(2012)
J. Atmos. Ocean. Technol.
, vol.29
, pp. 765-771
-
-
Hirth, B.D.1
Schroeder, J.L.2
Gunter, W.S.3
Guynes, J.G.4
-
59
-
-
85086946768
-
Does the wind turbine wake follow the topography? A multi-lidar study in complex terrain
-
R. Menke, N. Vasiljevi?, K. S. Hansen, A. N. Hahmann, J. Mann, Does the wind turbine wake follow the topography? A multi-lidar study in complex terrain. Wind Energy Sci. 3, 681-691 (2018). doi: 10.5194/wes-3-681-2018
-
(2018)
Wind Energy Sci.
, vol.3
, pp. 681-691
-
-
Menke, R.1
Vasiljevi, N.2
Hansen, K.S.3
Hahmann, A.N.4
Mann, J.5
-
60
-
-
85049129073
-
Wind turbine wake measurements with automatically adjusting scanning trajectories in a multi-Doppler lidar setup
-
N. Wildmann, N. Vasiljevic, T. Gerz, Wind turbine wake measurements with automatically adjusting scanning trajectories in a multi-Doppler lidar setup. Atmos. Meas. Tech. 11, 3801-3814 (2018). doi: 10.5194/amt-11-3801-2018
-
(2018)
Atmos. Meas. Tech.
, vol.11
, pp. 3801-3814
-
-
Wildmann, N.1
Vasiljevic, N.2
Gerz, T.3
-
61
-
-
84904596166
-
Remote sensing observation used in offshore wind energy
-
C. B. Hasager et al., Remote Sensing Observation Used in Offshore Wind Energy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 1, 67-79 (2008). doi: 10.1109/JSTARS.2008.2002218
-
(2008)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.1
, pp. 67-79
-
-
Hasager, C.B.1
-
62
-
-
60549102442
-
Review of methodologies for offshore wind resource assessment in european seas
-
A. M. Sempreviva, R. J. Barthelmie, S. C. Pryor, Review of Methodologies for Offshore Wind Resource Assessment in European Seas. Surv. Geophys. 29, 471-497 (2008). doi: 10.1007/s10712-008-9050-2
-
(2008)
Surv. Geophys.
, vol.29
, pp. 471-497
-
-
Sempreviva, A.M.1
Barthelmie, R.J.2
Pryor, S.C.3
-
63
-
-
85044599989
-
-
PNNL-26267, Pacific Northwest National Laboratory
-
S. E. Haupt, R. Kotamarthi, Y. Feng, J. D. Mirocha, E. Koo, R. Linn, B. Kosovic, B. Brown, A. Anderson, M. J. Churchfield, C. Draxl, E. Quon, W. Shaw, L. Berg, R. Rai, B. L. Ennis, "Second year report of the atmosphere to electrons mesoscale to microscale coupling project: Nonstationary modeling techniques and assessment" (PNNL-26267, Pacific Northwest National Laboratory, 2017); www.pnnl.gov/main/publications/external/technical_reports/PNNL-26267.pdf.
-
(2017)
Second Year Report of the Atmosphere to Electrons Mesoscale to Microscale Coupling Project: Nonstationary Modeling Techniques and Assessment
-
-
Haupt, S.E.1
Kotamarthi, R.2
Feng, Y.3
Mirocha, J.D.4
Koo, E.5
Linn, R.6
Kosovic, B.7
Brown, B.8
Anderson, A.9
Churchfield, M.J.10
Draxl, C.11
Quon, E.12
Shaw, W.13
Berg, L.14
Rai, R.15
Ennis, B.L.16
-
64
-
-
85074297286
-
-
Conference Paper NREL/CP-5000-53567, NREL
-
S. Lee, M. Churchfield, P. Moriarty, J. Jonkman, J. Michalakes, "Atmospheric and wake turbulence impacts on wind turbine fatigue loadings: Preprint" (Conference Paper NREL/CP-5000-53567, NREL, 2011); www.nrel.gov/docs/fy12osti/53567.pdf.
-
(2011)
Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings: Preprint
-
-
Lee, S.1
Churchfield, M.2
Moriarty, P.3
Jonkman, J.4
Michalakes, J.5
-
65
-
-
85049638046
-
Measured aerodynamic forces on a full scale 2MW turbine in comparison with EllipSys3D and HAWC2 simulations
-
H. A. Madsen, N. N. Sørensen, C. Bak, N. Troldborg, G. Pirrung, Measured aerodynamic forces on a full scale 2MW turbine in comparison with EllipSys3D and HAWC2 simulations. J. Phys. Conf. Ser. 1037, 022011 (2018). doi: 10.1088/1742-6596/1037/2/022011
-
(2018)
J. Phys. Conf. Ser.
, vol.1037
, pp. 022011
-
-
Madsen, H.A.1
Sørensen, N.N.2
Bak, C.3
Troldborg, N.4
Pirrung, G.5
-
66
-
-
85049650658
-
Final results from the EU project AVATAR: Aerodynamic modelling of 10 MW wind turbines
-
J. G. Schepers et al., Final results from the EU project AVATAR: Aerodynamic modelling of 10 MW wind turbines. J. Phys. Conf. Ser. 1037, 022013 (2018). doi: 10.1088/1742-6596/1037/2/022013
-
(2018)
J. Phys. Conf. Ser.
, vol.1037
, pp. 022013
-
-
Schepers, J.G.1
-
67
-
-
85074264927
-
-
NREL/TP-2C00-67648, DOE
-
M. A. Sprague, S. Boldyrev, P. Fischer, R. Grout, W. I. Gustafson Jr., R. Moser, "Turbulent flow simulation at the exascale: Opportunities and challenges workshop," 4 to 5 August 2015 (NREL/TP-2C00-67648, DOE, 2017); www.nrel.gov/docs/fy17osti/67648.pdf.
-
(2017)
Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop," 4 to 5 August 2015
-
-
Sprague, M.A.1
Boldyrev, S.2
Fischer, P.3
Grout, R.4
Gustafson, W.I.5
Moser, R.6
-
68
-
-
84964642755
-
Fluid-structure interaction computations for geometrically resolved rotor simulations using CFD
-
J. C. Heinz, N. N. Sørensen, F. Zahle, Fluid-structure interaction computations for geometrically resolved rotor simulations using CFD. Wind Energy 19, 2205-2221 (2016). doi: 10.1002/we.1976
-
(2016)
Wind Energy
, vol.19
, pp. 2205-2221
-
-
Heinz, J.C.1
Sørensen, N.N.2
Zahle, F.3
-
69
-
-
84993940235
-
Fundamental aeroelastic properties of a bend-twist coupled blade section
-
A. R. Stäblein, M. H. Hansen, G. Pirrung, Fundamental aeroelastic properties of a bend-twist coupled blade section. J. Fluids Structures 68, 72-89 (2017). doi: 10.1016/j.jfluidstructs.2016.10.010
-
(2017)
J. Fluids Structures
, vol.68
, pp. 72-89
-
-
Stäblein, A.R.1
Hansen, M.H.2
Pirrung, G.3
-
70
-
-
85049628422
-
Modal properties and stability of bend-twist coupled wind turbine blades
-
A. R. Stäblein, M. H. Hansen, D. R. Verelst, Modal Properties and Stability of Bend-Twist Coupled Wind Turbine Blades. Wind Energy Sci. 2, 343-360 (2017). doi: 10.5194/wes-2-343-2017
-
(2017)
Wind Energy Sci.
, vol.2
, pp. 343-360
-
-
Stäblein, A.R.1
Hansen, M.H.2
Verelst, D.R.3
-
71
-
-
85049641780
-
Periodic stability analysis of wind turbines operating in turbulent wind conditions
-
R. Riva, S. Cacciola, C. L. Bottasso, Periodic Stability Analysis of Wind Turbines Operating in Turbulent Wind Conditions. Wind Energy Sci. 1, 177-203 (2016). doi: 10.5194/wes-1-177-2016
-
(2016)
Wind Energy Sci.
, vol.1
, pp. 177-203
-
-
Riva, R.1
Cacciola, S.2
Bottasso, C.L.3
-
72
-
-
84989865066
-
Ultimate loads and response analysis of a monopile supported offshore wind turbine using fully coupled simulation
-
A. Morató, S. Sriramula, N. Krishnan, J. Nichols, Ultimate loads and response analysis of a monopile supported offshore wind turbine using fully coupled simulation. Renew. Energy 101, 126-143 (2017). doi: 10.1016/j.renene.2016.08.056
-
(2017)
Renew. Energy
, vol.101
, pp. 126-143
-
-
Morató, A.1
Sriramula, S.2
Krishnan, N.3
Nichols, J.4
-
73
-
-
85048827182
-
Critical assessment of non-linear hydrodynamic load models for a fully flexible monopile offshore wind turbine
-
L. Suja-Thauvin, J. R. Krokstad, E. E. Bachynski, Critical assessment of non-linear hydrodynamic load models for a fully flexible monopile offshore wind turbine. Ocean Eng. 164, 87-104 (2018). doi: 10.1016/j.oceaneng.2018.06.027
-
(2018)
Ocean Eng.
, vol.164
, pp. 87-104
-
-
Suja-Thauvin, L.1
Krokstad, J.R.2
Bachynski, E.E.3
-
74
-
-
68149144101
-
Dynamics of offshore floating turbines-model development and verification
-
J. Jonkman, Dynamics of Offshore Floating Turbines-Model Development and Verification. Wind Energy 12, 459-492 (2009). doi: 10.1002/we.347
-
(2009)
Wind Energy
, vol.12
, pp. 459-492
-
-
Jonkman, J.1
-
75
-
-
85016424390
-
A comparison of numerical simulations of breaking wave forces on a monopile structure using two different numerical models based on finite difference and finite volume methods
-
J. Jose, S. J. Choi, K. E. Giljarhus, O. T. Gudmestad, A comparison of numerical simulations of breaking wave forces on a monopile structure using two different numerical models based on finite difference and finite volume methods. Ocean Eng. 137, 78-88 (2017). doi: 10.1016/j.oceaneng.2017.03.045
-
(2017)
Ocean Eng.
, vol.137
, pp. 78-88
-
-
Jose, J.1
Choi, S.J.2
Giljarhus, K.E.3
Gudmestad, O.T.4
-
76
-
-
84897038526
-
Influence of second-order random wave kinematics on the design loads of offshore wind turbine support structures
-
A. Natarajan, Influence of second-order random wave kinematics on the design loads of offshore wind turbine support structures. Renew. Energy 68, 829-841 (2014). doi: 10.1016/j.renene.2014.02.052
-
(2014)
Renew. Energy
, vol.68
, pp. 829-841
-
-
Natarajan, A.1
-
77
-
-
84906235801
-
Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth
-
B. T. Paulsen, H. Bredmose, H. B. Bingham, N. G. Jacobsen, Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth. J. Fluid Mech. 755, 1-34 (2014). doi: 10.1017/jfm.2014.386
-
(2014)
J. Fluid Mech.
, vol.755
, pp. 1-34
-
-
Paulsen, B.T.1
Bredmose, H.2
Bingham, H.B.3
Jacobsen, N.G.4
-
78
-
-
85021348049
-
Gusts and shear within hurricane eyewalls can exceed offshore wind-turbine design standards
-
R. Worsnop, J. K. Lundquist, G. H. Bryan, R. Damiani, W. Musial, Gusts and Shear Within Hurricane Eyewalls Can Exceed Offshore Wind-Turbine Design Standards. Geophys. Res. Lett. 44, 6413-6420 (2017). doi: 10.1002/2017GL073537
-
(2017)
Geophys. Res. Lett.
, vol.44
, pp. 6413-6420
-
-
Worsnop, R.1
Lundquist, J.K.2
Bryan, G.H.3
Damiani, R.4
Musial, W.5
-
79
-
-
85020313786
-
-
DOE/GO-102015-4798, Tech. Rep. NREL/TP-5000-65283, NREL, 2016
-
E. Kim, L. Manuel, M. Curcic, S. S. Chen, C. Phillips, P. Veers, "On the use of coupled wind, wave, and current fields in the simulation of loads on bottom-supported offshore wind turbines during hurricanes" (DOE/GO-102015-4798 2016, Tech. Rep. NREL/TP-5000-65283, NREL, 2016); www.nrel. gov/docs/fy16osti/65283.pdf.
-
(2016)
On the Use of Coupled Wind, Wave, and Current Fields in the Simulation of Loads on Bottom-supported Offshore Wind Turbines during Hurricanes
-
-
Kim, E.1
Manuel, L.2
Curcic, M.3
Chen, S.S.4
Phillips, C.5
Veers, P.6
-
80
-
-
84902246726
-
How can a wind turbine survive a tropical cyclone?
-
T. Han, G. McCann, T. A. Mücke, K. Freudenreich, How can a wind turbine survive a tropical cyclone? Renew. Energy 70, 3-10 (2014). doi: 10.1016/j.renene.2014.02.014
-
(2014)
Renew. Energy
, vol.70
, pp. 3-10
-
-
Han, T.1
McCann, G.2
Mücke, T.A.3
Freudenreich, K.4
-
81
-
-
85131862738
-
Analysis of wake states by a full?field actuator disc model
-
J. N. Sørensen, W. Z. Shen, X. Munduate, Analysis of wake states by a full?field actuator disc model. Wind Energy 1, 73-88 (1998). doi: 10.1002/(SICI)1099-1824(199812)1:273: AID-WE123.0.CO;2-L
-
(1998)
Wind Energy
, vol.1
, pp. 73-88
-
-
Sørensen, J.N.1
Shen, W.Z.2
Munduate, X.3
-
82
-
-
85083942988
-
-
AIAA SciTech 2019 Forum, San Diego, CA, 7 to 11 January
-
C. Lienard, R. Boisard, C. Daudin, "Aerodynamic behavior of a floating offshore wind turbine," AIAA SciTech 2019 Forum, San Diego, CA, 7 to 11 January 2019; doi: 10.2514/6.2019-1575
-
(2019)
Aerodynamic Behavior of A Floating Offshore Wind Turbine
-
-
Lienard, C.1
Boisard, R.2
Daudin, C.3
-
83
-
-
84897942864
-
Model tests for a floating wind turbine on three different floaters
-
B. Koo, A. J. Goupee, R. W. Kimball, K. F. Lambrakos, Model Tests for a Floating Wind Turbine on Three Different Floaters. J. Offshore Mech. Arctic Eng. 136, 020907 (2014). doi: 10.1115/1.4024711
-
(2014)
J. Offshore Mech. Arctic Eng.
, vol.136
, pp. 020907
-
-
Koo, B.1
Goupee, A.J.2
Kimball, R.W.3
Lambrakos, K.F.4
-
84
-
-
85057162519
-
Recycling glass fiber thermoplastic composites from wind turbine blades
-
D. S. Cousins, Y. Suzuki, R. E. Murray, J. R. Samaniuk, A. P. Stebner, Recycling glass fiber thermoplastic composites from wind turbine blades. J. Clean. Prod. 209, 1252-1263 (2019). doi: 10.1016/j.jclepro.2018.10.286
-
(2019)
J. Clean. Prod.
, vol.209
, pp. 1252-1263
-
-
Cousins, D.S.1
Suzuki, Y.2
Murray, R.E.3
Samaniuk, J.R.4
Stebner, A.P.5
-
85
-
-
85074269253
-
-
Grid formation involves supporting the fundamental structure of an electric grid system. This includes serving as a reliable voltage source for ac or dc systems and providing frequency signals for ac systems
-
Grid formation involves supporting the fundamental structure of an electric grid system. This includes serving as a reliable voltage source for ac or dc systems and providing frequency signals for ac systems.
-
-
-
-
86
-
-
85020719881
-
Model-based receding horizon control of wind farms for secondary frequency regulation
-
C. Shapiro, P. Bauweraerts, J. Meyers, C. Meneveau, D. F. Gayme, Model-based receding horizon control of wind farms for secondary frequency regulation. Wind Energy 20, 1261-1275 (2017). doi: 10.1002/we.2093
-
(2017)
Wind Energy
, vol.20
, pp. 1261-1275
-
-
Shapiro, C.1
Bauweraerts, P.2
Meyers, J.3
Meneveau, C.4
Gayme, D.F.5
-
87
-
-
84933054572
-
Investigating the impacts of wind generation participation in interconnection frequency response
-
V. Gevorgian, Y. Zhang, E. Ela, Investigating the Impacts of Wind Generation Participation in Interconnection Frequency Response. IEEE Trans. Sustainable Energy 6, 1004-1012 (2015). doi: 10.1109/TSTE.2014.2343836
-
(2015)
IEEE Trans. Sustainable Energy
, vol.6
, pp. 1004-1012
-
-
Gevorgian, V.1
Zhang, Y.2
Ela, E.3
-
88
-
-
85026996654
-
Active power control of waked wind farms
-
Toulouse, France
-
J. W. van Wingerden, L. Y. Pao, J. Aho, P. Fleming, "Active Power Control of Waked Wind Farms." Proc. IFAC World Congress, Toulouse, France, (2017), pp. 4570-4577. doi: 10.1016/j.ifacol.2017.08.378
-
(2017)
Proc. IFAC World Congress
, pp. 4570-4577
-
-
Van Wingerden, J.W.1
Pao, L.Y.2
Aho, J.3
Fleming, P.4
-
89
-
-
84954091136
-
Wind plant power optimization through yaw control using a parametric model for wake effects-A CFD simulation study
-
P. M. O. Gebraad et al., Wind plant power optimization through yaw control using a parametric model for wake effects-a CFD simulation study. Wind Energy 19, 95-114 (2014). doi: 10.1002/we.1822
-
(2014)
Wind Energy
, vol.19
, pp. 95-114
-
-
Gebraad, P.M.O.1
-
90
-
-
85023619722
-
Full-scale field test of wake steering
-
P. Fleming et al., Full-Scale Field Test of Wake Steering. J. Phys. Conf. Ser. 854, 012013 (2017). doi: 10.1088/1742-6596/854/1/012013
-
(2017)
J. Phys. Conf. Ser.
, vol.854
, pp. 012013
-
-
Fleming, P.1
-
91
-
-
85054925405
-
A simulation study demonstrating the importance oflarge-scale trailing vortices in wake steering
-
P. Fleming et al., A simulation study demonstrating the importance oflarge-scale trailing vortices in wake steering. Wind Energy Sci. 3, 243-255 (2018). doi: 10.5194/wes-3-243-2018
-
(2018)
Wind Energy Sci.
, vol.3
, pp. 243-255
-
-
Fleming, P.1
-
92
-
-
85068504926
-
A Wind direction estimation using SCADA data with consensus-based optimization
-
J. Annoni et al., A Wind direction estimation using SCADA data with consensus-based optimization. Wind Energy Sci. 4, 355-368 (2019). doi: 10.5194/wes-2018-60
-
(2019)
Wind Energy Sci.
, vol.4
, pp. 355-368
-
-
Annoni, J.1
-
93
-
-
85049641677
-
Lidar-based closed-loop wake redirection in high-fidelity simulation
-
S. Raach, S. Boersma, B. Doekemeijer, J.-W. van Wingerden, P. W. Cheng, Lidar-based closed-loop wake redirection in high-fidelity simulation. J. Phys. Conf. Ser. 1037, 032016 (2018). doi: 10.1088/1742-6596/1037/3/032016
-
(2018)
J. Phys. Conf. Ser.
, vol.1037
, pp. 032016
-
-
Raach, S.1
Boersma, S.2
Doekemeijer, B.3
Van Wingerden, J.-W.4
Cheng, P.W.5
-
94
-
-
84992091197
-
Computational fluid dynamics simulation study of active power control in wind plants
-
P. A. Fleming, J. Aho, P. Gebraad, L. Pao, Y. Zhang, "Computational fluid dynamics simulation study of active power control in wind plants" in Proc. American Control Conf. (IEEE, 2016), pp. 1413-1420;.doi: 10.1109/ACC.2016.7525115
-
(2016)
Proc. American Control Conf. (IEEE
, pp. 1413-1420
-
-
Fleming, P.A.1
Aho, J.2
Gebraad, P.3
Pao, L.4
Zhang, Y.5
-
95
-
-
85069991557
-
An active power control approach for wake-induced load alleviation in a fully developed wind farm boundary layer
-
M. Vali, V. Petrovi?, G. Steinfeld, L. Y. Pao, M. Kühn, An active power control approach for wake-induced load alleviation in a fully developed wind farm boundary layer. Wind Energy Sci. 4, 139-161 (2019). doi: 10.5194/wes-4-139-2019
-
(2019)
Wind Energy Sci.
, vol.4
, pp. 139-161
-
-
Vali, M.1
Petrovi, V.2
Steinfeld, G.3
Pao, L.Y.4
Kühn, M.5
-
96
-
-
85060790962
-
Comparison of grid following and grid forming control for a high inverter penetration power system
-
IEEE
-
D. Pattabiraman, R. H. Lasseter, T. M. Jahns, "Comparison of grid following and grid forming control for a high inverter penetration power system," in 2018 IEEE Power Energy Society General Meeting (IEEE, 2018);.doi: 10.1109/PESGM.2018.8586162
-
(2018)
2018 IEEE Power Energy Society General Meeting
-
-
Pattabiraman, D.1
Lasseter, R.H.2
Jahns, T.M.3
-
97
-
-
85049983470
-
Can synthetic inertia from wind power stabilize grids?
-
P. Fairley, "Can synthetic inertia from wind power stabilize grids?" IEEE Spectrum (2016); https://spectrum.ieee.org/energywise/energy/renewables/can-synthetic-inertiastabilize-power-grids.
-
(2016)
IEEE Spectrum
-
-
Fairley, P.1
-
98
-
-
85028193123
-
Stochastic optimization for unit commitment-A review
-
Q. P. Zheng, J. Wang, A. L. Liu, Stochastic Optimization for Unit Commitment-A Review. IEEE Trans. Power Syst. 30, 1913-1924 (2015). doi: 10.1109/TPWRS.2014.2355204
-
(2015)
IEEE Trans. Power Syst.
, vol.30
, pp. 1913-1924
-
-
Zheng, Q.P.1
Wang, J.2
Liu, A.L.3
-
99
-
-
85027979603
-
A survey of distributed optimization and control algorithms for electric power systems
-
D. Molzahn et al., A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems. IEEE Trans. Smart Grid 8, 2941-2962 (2017). doi: 10.1109/TSG.2017.2720471
-
(2017)
IEEE Trans. Smart Grid
, vol.8
, pp. 2941-2962
-
-
Molzahn, D.1
-
101
-
-
85062786712
-
Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modelling approaches
-
N. Helistö, J. Kiviluoma, H. Holttinen, J. D. Lara, B.-M. Hodge, Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modelling approaches. WIREs Energy Environ. 8, e341 (2019). doi: 10.1002/wene.341
-
(2019)
WIREs Energy Environ.
, vol.8
, pp. e341
-
-
Helistö, N.1
Kiviluoma, J.2
Holttinen, H.3
Lara, J.D.4
Hodge, B.-M.5
-
102
-
-
85052810840
-
A comparison of variation management strategies for wind power integration in different electricity system contexts
-
L. Göransson, F. A. Johnsson, A comparison of variation management strategies for wind power integration in different electricity system contexts. Wind Energy 21, 837-854 (2018). doi: 10.1002/we.2198
-
(2018)
Wind Energy
, vol.21
, pp. 837-854
-
-
Göransson, L.1
Johnsson, F.A.2
-
103
-
-
84962269370
-
The FAIR Guiding Principles for scientific data management and stewardship
-
PMID: 26978244
-
M. D. Wilkinson et al., The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016). doi: 10.1038/sdata.2016.18; pmid: 26978244
-
(2016)
Sci. Data
, vol.3
, pp. 160018
-
-
Wilkinson, M.D.1
-
104
-
-
85074272086
-
Taxonomy and metadata for wind energy research & development
-
A. M. Sempreviva et al., Taxonomy and metadata for wind energy research & development. Version 1, Zenodo (2017). doi: 10.5281/ZENODO.1199489
-
(2017)
Version 1, Zenodo
-
-
Sempreviva, A.M.1
-
105
-
-
85074276049
-
-
European Technology & Innovation Platform on Wind Energy (ETIP Wind) Steering Committee, "When wind goes digital" (ETIP Wind
-
European Technology & Innovation Platform on Wind Energy (ETIP Wind) Steering Committee, "When wind goes digital" (ETIP Wind, 2014); https://etipwind.eu/news/wind-goes-digital/.
-
(2014)
-
-
-
106
-
-
85021817099
-
Data science: A new paradigm in the age of big-data science and analytics
-
C. E. Concolato, L. M. Chen, Data science: A new paradigm in the age of big-data science and analytics. New Math. Nat. Computation 13, 119-143 (2017). doi: 10.1142/S1793005717400038
-
(2017)
New Math. Nat. Computation
, vol.13
, pp. 119-143
-
-
Concolato, C.E.1
Chen, L.M.2
|