메뉴 건너뛰기




Volumn 366, Issue 6464, 2019, Pages

Grand challenges in the science of wind energy

(29)  Veers, Paul a   Dykes, Katherine b   Lantz, Eric a   Barth, Stephan c   Bottasso, Carlo L d   Carlson, Ola e   Clifton, Andrew f   Green, Johney a   Green, Peter a   Holttinen, Hannele g   Laird, Daniel a   Lehtomäki, Ville h   Lundquist, Julie K a,i   Manwell, James j   Marquis, Melinda k   Meneveau, Charles l   Moriarty, Patrick a   Munduate, Xabier m   Muskulus, Michael n   Naughton, Jonathan o   more..


Author keywords

[No Author keywords available]

Indexed keywords

ELECTRICITY; ENGINEERING; OPTIMIZATION; PHYSICS; ROTATION; UNDERPINNING; WIND POWER;

EID: 85074117909     PISSN: 00368075     EISSN: 10959203     Source Type: Journal    
DOI: 10.1126/science.aau2027     Document Type: Article
Times cited : (685)

References (106)
  • 1
    • 85074271808 scopus 로고    scopus 로고
    • UN, World Population Prospects 2017
    • UN, World Population Prospects 2017 (2017); https://population.un.org/wpp/DVD/Files/2_Indicators%20(Probabilistic%20Projections)/UN_PPP2017_Output_PopTot.xls.
    • (2017)
  • 2
    • 85074288812 scopus 로고    scopus 로고
    • BNEF, NEO 2018 presentation at CSIS
    • BNEF, NEO 2018 presentation at CSIS (2018); https://about. bnef.com/blog/neo-2018-presentation-csis/.
    • (2018)
  • 3
    • 85074300061 scopus 로고    scopus 로고
    • International Energy Agency (IEA), "World energy outlook 2018" (Tech. Rep., IEA
    • International Energy Agency (IEA), "World energy outlook 2018" (Tech. Rep., IEA, 2018); www.iea.org/weo2018/.
    • (2018)
  • 4
    • 85071636254 scopus 로고    scopus 로고
    • BNEF
    • BNEF, "New energy outlook 2019" (2019); https://about. bnef.com/new-energy-outlook/.
    • (2019) New Energy Outlook 2019
  • 5
    • 85006366442 scopus 로고    scopus 로고
    • BP Energy Economics
    • BP Energy Economics, "BP Energy Outlook: 2018 edition" (2018); www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018.pdf.
    • (2018) BP Energy Outlook: 2018 Edition
  • 7
    • 85074289667 scopus 로고    scopus 로고
    • Global Wind Energy Council
    • Global Wind Energy Council, "51.3 GW of global wind capacity installed in 2018" (2019); https://gwec.net/51-3-gw-ofglobal-wind-capacity-installed-in-2018/.
    • (2019) 51.3 GW of Global Wind Capacity Installed in 2018
  • 9
    • 85050679276 scopus 로고    scopus 로고
    • International Renewable Energy Agency (IRENA), (IRENA
    • International Renewable Energy Agency (IRENA), "Global energy transformation: A roadmap to 2050" (IRENA, 2018); www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_Report_GET_2018.pdf.
    • (2018) Global Energy Transformation: A Roadmap to 2050
  • 10
    • 84960121106 scopus 로고    scopus 로고
    • The evolution of the market: Designing a market for high levels of variable generation
    • M. Ahlstrom et al., The evolution of the market: Designing a market for high levels of variable generation. IEEE Power Energy Mag. 13, 60-66 (2015). doi: 10.1109/MPE.2015.2458755
    • (2015) IEEE Power Energy Mag. , vol.13 , pp. 60-66
    • Ahlstrom, M.1
  • 11
    • 85017617268 scopus 로고    scopus 로고
    • Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy
    • B. Kroposki et al., Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy. IEEE Power Energy Mag. 15, 61-73 (2017). doi: 10.1109/MPE.2016.2637122
    • (2017) IEEE Power Energy Mag. , vol.15 , pp. 61-73
    • Kroposki, B.1
  • 12
    • 85036458521 scopus 로고    scopus 로고
    • Paving the way: A future without inertia is closer than you think
    • T. Ackermann et al., Paving the Way: A Future Without Inertia Is Closer Than You Think. IEEE Power Energy Mag. 15, 61-69 (2017). doi: 10.1109/MPE.2017.2729138
    • (2017) IEEE Power Energy Mag. , vol.15 , pp. 61-69
    • Ackermann, T.1
  • 13
    • 85054080265 scopus 로고    scopus 로고
    • Inter-sectoral effects of high renewable energy share in global energy system
    • E. Pursiheimo, H. Holttinen, T. Koljonen, Inter-sectoral effects of high renewable energy share in global energy system. Renew. Energy 136, 1119-1129 (2019). doi: 10.1016/j.renene.2018.09.082
    • (2019) Renew. Energy , vol.136 , pp. 1119-1129
    • Pursiheimo, E.1    Holttinen, H.2    Koljonen, T.3
  • 14
    • 84959561581 scopus 로고    scopus 로고
    • Alternatives no more: Wind and solar power are mainstays of a clean, reliable, affordable grid
    • M. B. Milligan et al., Alternatives No More: Wind and Solar Power Are Mainstays of a Clean, Reliable, Affordable Grid. IEEE Power Energy Mag. 13, 78-87 (2015). doi: 10.1109/MPE.2015.2462311
    • (2015) IEEE Power Energy Mag. , vol.13 , pp. 78-87
    • Milligan, M.B.1
  • 15
    • 85074288593 scopus 로고    scopus 로고
    • Converter dominated" refers to a grid system largely composed of converter-based generation technologies (such as wind and solar) that convert ac to dc, which can then be fed to the larger system via dc transmission or inverted back to ac to feed a larger ac system
    • "Converter dominated" refers to a grid system largely composed of converter-based generation technologies (such as wind and solar) that convert ac to dc, which can then be fed to the larger system via dc transmission or inverted back to ac to feed a larger ac system.
  • 21
    • 20044387646 scopus 로고    scopus 로고
    • Trends in the design, manufacture and evaluation of wind turbine blades
    • P. S. Veers et al., Trends in the design, manufacture and evaluation of wind turbine blades. Wind Energy 6, 245-259 (2003). doi: 10.1002/we.90
    • (2003) Wind Energy , vol.6 , pp. 245-259
    • Veers, P.S.1
  • 23
    • 85026489852 scopus 로고    scopus 로고
    • Effects of aeroelastic tailoring on performance characteristics of wind turbine systems
    • S. Scott et al., Effects of aeroelastic tailoring on performance characteristics of wind turbine systems. Renew. Energy 114, 887-903 (2017). doi: 10.1016/j.renene.2017.06.048
    • (2017) Renew. Energy , vol.114 , pp. 887-903
    • Scott, S.1
  • 24
    • 85052940284 scopus 로고    scopus 로고
    • Integration of multiple passive load mitigation technologies by automated design optimization-The case study of a medium-size onshore wind turbine
    • P. Bortolotti, C. L. Bottasso, A. Croce, L. Sartori, Integration of Multiple Passive Load Mitigation Technologies by Automated Design Optimization-The Case Study of a Medium-Size Onshore Wind Turbine. Wind Energy 22, 65-79 (2019). doi: 10.1002/we.2270
    • (2019) Wind Energy , vol.22 , pp. 65-79
    • Bortolotti, P.1    Bottasso, C.L.2    Croce, A.3    Sartori, L.4
  • 27
    • 85074299688 scopus 로고    scopus 로고
    • Many technology innovation pathways, including concepts such as airborne wind turbines, were discussed and documented in the International Energy Agency Grand Wind Workshop report. Progress on the grand challenges is essential to enabling such technology configurations. However, the focus of this article is on major breakthroughs, even with power plants comprising standard horizontal-axis wind turbines
    • Many technology innovation pathways, including concepts such as airborne wind turbines, were discussed and documented in the International Energy Agency Grand Wind Workshop report. Progress on the grand challenges is essential to enabling such technology configurations. However, the focus of this article is on major breakthroughs, even with power plants comprising standard horizontal-axis wind turbines.
  • 28
    • 0028481033 scopus 로고
    • The spatial structure of neutral atmospheric surface-layer turbulence
    • J. Mann, The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech. 273, 141-168 (1994). doi: 10.1017/S0022112094001886
    • (1994) J. Fluid Mech. , vol.273 , pp. 141-168
    • Mann, J.1
  • 29
  • 30
    • 85074283158 scopus 로고
    • Report no. SAND-88-0152C, CONF-890102-9, Sandia National Laboratories
    • P. S. Veers, "Three-dimensional wind simulation" (Report no. SAND-88-0152C, CONF-890102-9, Sandia National Laboratories, 1988); https://prod-ng.sandia.gov/techlibnoauth/access-control.cgi/1988/880152.pdf.
    • (1988) Three-dimensional Wind Simulation
    • Veers, P.S.1
  • 31
    • 4344617845 scopus 로고    scopus 로고
    • Toward Numerical Modeling in the "terra Incognita"
    • J. C. Wyngaard, Toward Numerical Modeling in the "Terra Incognita". J. Atmos. Sci. 61, 1816-1826 (2004). doi: 10.1175/1520-0469(2004)0611816:TNMITT2.0.CO;2
    • (2004) J. Atmos. Sci. , vol.61 , pp. 1816-1826
    • Wyngaard, J.C.1
  • 32
    • 85055574246 scopus 로고    scopus 로고
    • Variation of boundary-layer wind spectra with height
    • X. G. Larsén, E. L. Petersen, S. E. Larsen, Variation of boundary-layer wind spectra with height. Q. J. R. Meteorol. Soc. 144, 2054-2066 (2018). doi: 10.1002/qj.3301
    • (2018) Q. J. R. Meteorol. Soc. , vol.144 , pp. 2054-2066
    • Larsén, X.G.1    Petersen, E.L.2    Larsen, S.E.3
  • 33
    • 84984674363 scopus 로고    scopus 로고
    • Mesoscale to microscale wind farm modeling and evaluation
    • J. S. Sanz Rodrigo et al., Mesoscale to microscale wind farm modeling and evaluation. WIREs Energy Environ. 6, e214 (2017). doi: 10.1002/wene.214
    • (2017) WIREs Energy Environ. , vol.6 , pp. e214
    • Sanz Rodrigo, J.S.1
  • 34
    • 85015831994 scopus 로고    scopus 로고
    • Complex terrain experiments in the New European Wind Atlas
    • PMID: 28265025
    • J. Mann et al., Complex terrain experiments in the New European Wind Atlas. Philos. Trans. R. Soc. A 375, 20160101 (2017). doi: 10.1098/rsta.2016.0101; pmid: 28265025
    • (2017) Philos. Trans. R. Soc. A , vol.375 , pp. 20160101
    • Mann, J.1
  • 35
    • 84878742677 scopus 로고    scopus 로고
    • Crop wind energy experiment (cwex): Observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm
    • D. A. Rajewski et al., Crop Wind Energy Experiment (CWEX): Observations of Surface-Layer, Boundary Layer, and Mesoscale Interactions with a Wind Farm. Bull. Am. Meteorol. Soc. 94, 655-672 (2013). doi: 10.1175/BAMS-D-11-00240.1
    • (2013) Bull. Am. Meteorol. Soc. , vol.94 , pp. 655-672
    • Rajewski, D.A.1
  • 36
    • 85044870239 scopus 로고    scopus 로고
    • Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain
    • X. Han, D. Liu, C. Xu, W. Z. Shen, Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain. Renew. Energy 126, 640-651 (2018). doi: 10.1016/j.renene.2018.03.048
    • (2018) Renew. Energy , vol.126 , pp. 640-651
    • Han, X.1    Liu, D.2    Xu, C.3    Shen, W.Z.4
  • 37
    • 85009268680 scopus 로고    scopus 로고
    • Improving wind predictions in the marine atmospheric boundary layer through parameter estimation in a single-column model
    • J. A. Lee et al., Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model. Mon. Weather Rev. 145, 5-24 (2017). doi: 10.1175/MWR-D-16-0063.1
    • (2017) Mon. Weather Rev. , vol.145 , pp. 5-24
    • Lee, J.A.1
  • 38
    • 84875429928 scopus 로고    scopus 로고
    • Large eddy simulations of fully developed wind-turbine array boundary layers
    • M. Calaf, C. Meneveau, J. Meyers, Large eddy simulations of fully developed wind-turbine array boundary layers. Phys. Fluids 22, 015110 (2010). doi: 10.1063/1.3291077
    • (2010) Phys. Fluids , vol.22 , pp. 015110
    • Calaf, M.1    Meneveau, C.2    Meyers, J.3
  • 39
    • 85049695530 scopus 로고    scopus 로고
    • Wake behind an offshore wind farm observed with dual-Doppler radars
    • N. G. Nygaard, A. C. Newcombe, Wake behind an offshore wind farm observed with dual-Doppler radars. J. Phys. Conf. Ser. 1037, 072008 (2018);.doi: 10.1088/1742-6596/1037/7/072008
    • (2018) J. Phys. Conf. Ser. , vol.1037 , pp. 072008
    • Nygaard, N.G.1    Newcombe, A.C.2
  • 40
    • 85009110249 scopus 로고    scopus 로고
    • Flow structure and turbulence in wind farms
    • R. J. A. M. Stevens, C. Meneveau, Flow Structure and Turbulence in Wind Farms. Annu. Rev. Fluid Mech. 49, 311-339 (2017). doi: 10.1146/annurev-fluid-010816-060206
    • (2017) Annu. Rev. Fluid Mech. , vol.49 , pp. 311-339
    • Stevens, R.J.A.M.1    Meneveau, C.2
  • 41
    • 9244246787 scopus 로고    scopus 로고
    • The influence of large-scale wind power on global climate
    • PMID: 15536131
    • D. W. Keith et al., The influence of large-scale wind power on global climate. Proc. Natl. Acad. Sci. U.S.A. 101, 16115-16120 (2004). doi: 10.1073/pnas.0406930101; pmid: 15536131
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 16115-16120
    • Keith, D.W.1
  • 42
    • 84867977160 scopus 로고    scopus 로고
    • Local and mesoscale impacts of wind farms as parameterized in a mesoscale nwp model
    • A. C. Fitch et al., Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model. Mon. Weather Rev. 140, 3017-3038 (2012). doi: 10.1175/MWR-D-11-00352.1
    • (2012) Mon. Weather Rev. , vol.140 , pp. 3017-3038
    • Fitch, A.C.1
  • 43
    • 84948157760 scopus 로고    scopus 로고
    • The explicit wake parametrisation v1.0: A wind farm parametrisation in the mesoscale model wrf
    • P. J. H. Volker, J. Badger, A. N. Hahmann, S. Ott, The Explicit Wake Parametrisation V1.0: A wind farm parametrisation in the mesoscale model WRF. Geosci. Model Dev. 8, 3715-3731 (2015). doi: 10.5194/gmd-8-3715-2015
    • (2015) Geosci. Model Dev. , vol.8 , pp. 3715-3731
    • Volker, P.J.H.1    Badger, J.2    Hahmann, A.N.3    Ott, S.4
  • 44
    • 84964608747 scopus 로고    scopus 로고
    • Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation
    • A. Armstrong et al., Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation. Environ. Res. Lett. 11, 044024 (2016). doi: 10.1088/1748-9326/11/4/044024
    • (2016) Environ. Res. Lett. , vol.11 , pp. 044024
    • Armstrong, A.1
  • 45
    • 85035057347 scopus 로고    scopus 로고
    • Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data
    • J. C. Y. Lee, J. K. Lundquist, Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data. Geosci. Model Dev. 10, 4229-4244 (2017). doi: 10.5194/gmd-10-4229-2017
    • (2017) Geosci. Model Dev. , vol.10 , pp. 4229-4244
    • Lee, J.C.Y.1    Lundquist, J.K.2
  • 46
    • 85041628660 scopus 로고    scopus 로고
    • First in situ evidence of wakes in the far field behind offshore wind farms
    • PMID: 29391440
    • A. Platis et al., First in situ evidence of wakes in the far field behind offshore wind farms. Sci. Rep. 8, 2163 (2018). doi: 10.1038/s41598-018-20389-y; pmid: 29391440
    • (2018) Sci. Rep. , vol.8 , pp. 2163
    • Platis, A.1
  • 47
    • 85060125579 scopus 로고    scopus 로고
    • Micrometeorological Impacts of Offshore Wind Farms as seen in Observations and Simulations
    • S. K. Siedersleben et al., Micrometeorological Impacts of Offshore Wind Farms as seen in Observations and Simulations. Environ. Res. Lett. 13, 124012 (2018). doi: 10.1088/1748-9326/aaea0b
    • (2018) Environ. Res. Lett. , vol.13 , pp. 124012
    • Siedersleben, S.K.1
  • 48
    • 84866852922 scopus 로고    scopus 로고
    • Saturation wind power potential and its implications for wind energy
    • PMID: 23019353
    • M. Z. Jacobson, C. L. Archer, Saturation wind power potential and its implications for wind energy. Proc. Natl. Acad. Sci. U.S.A. 109, 15679-15684 (2012). doi: 10.1073/pnas.1208993109; pmid: 23019353
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 15679-15684
    • Jacobson, M.Z.1    Archer, C.L.2
  • 49
    • 84876167428 scopus 로고    scopus 로고
    • Are global wind power resource estimates overstated?
    • A. S. Adams, D. W. Keith, Are global wind power resource estimates overstated? Environ. Res. Lett. 8, 015021 (2013). doi: 10.1088/1748-9326/8/1/015021
    • (2013) Environ. Res. Lett. , vol.8 , pp. 015021
    • Adams, A.S.1    Keith, D.W.2
  • 50
    • 84880716408 scopus 로고    scopus 로고
    • Mesoscale influences of wind farms throughout a diurnal cycle
    • A. C. Fitch, J. K. Lundquist, J. B. Olson, Mesoscale Influences of Wind Farms throughout a Diurnal Cycle. Mon. Weather Rev. 141, 2173-2198 (2013). doi: 10.1175/MWR-D-12-00185.1
    • (2013) Mon. Weather Rev. , vol.141 , pp. 2173-2198
    • Fitch, A.C.1    Lundquist, J.K.2    Olson, J.B.3
  • 51
    • 85057347113 scopus 로고    scopus 로고
    • Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development
    • J. K. Lundquist, K. K. DuVivier, D. Kaffine, J. M. Tomaszewski, Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development. Nat. Energy 4, 26-34 (2019). doi: 10.1038/s41560-018-0281-2
    • (2019) Nat. Energy , vol.4 , pp. 26-34
    • Lundquist, J.K.1    DuVivier, K.K.2    Kaffine, D.3    Tomaszewski, J.M.4
  • 52
    • 85037693865 scopus 로고    scopus 로고
    • Southward shift of the global wind energy resource under high carbon dioxide emissions
    • K. B. Karnauskas, J. K. Lundquist, L. Zhang, Southward shift of the global wind energy resource under high carbon dioxide emissions. Nat. Geosci. 11, 38-43 (2018). doi: 10.1038/s41561-017-0029-9
    • (2018) Nat. Geosci. , vol.11 , pp. 38-43
    • Karnauskas, K.B.1    Lundquist, J.K.2    Zhang, L.3
  • 53
    • 84885660049 scopus 로고    scopus 로고
    • Meteorology for coastal/offshore wind energy in the United States: Recommendations and research needs for the next 10 years
    • C. L. Archer et al., Meteorology for coastal/offshore wind energy in the United States: Recommendations and research needs for the next 10 years. Bull. Am. Meteorol. Soc. 95, 515-519 (2014). doi: 10.1175/BAMS-D-13-00108.1
    • (2014) Bull. Am. Meteorol. Soc. , vol.95 , pp. 515-519
    • Archer, C.L.1
  • 54
    • 85062355540 scopus 로고    scopus 로고
    • Big wind power: Seven questions for turbulence research
    • C. Meneveau, Big wind power: Seven questions for turbulence research. J. Turbul. 20, 2-20 (2019). doi: 10.1080/14685248.2019.1584664
    • (2019) J. Turbul. , vol.20 , pp. 2-20
    • Meneveau, C.1
  • 55
    • 84898853205 scopus 로고    scopus 로고
    • Quantifying wind turbine wake characteristics from scanning remote sensor data
    • M. L. Aitken, R. M. Banta, Y. L. Pichugina, J. K. Lundquist, Quantifying wind turbine wake characteristics from scanning remote sensor data. J. Oceanic Atmos. Technol. 31, 765-787 (2014). doi: 10.1175/JTECH-D-13-00104.1
    • (2014) J. Oceanic Atmos. Technol. , vol.31 , pp. 765-787
    • Aitken, M.L.1    Banta, R.M.2    Pichugina, Y.L.3    Lundquist, J.K.4
  • 57
    • 85044245693 scopus 로고    scopus 로고
    • IEA wind task 32: Wind lidar identifying and mitigating barriers to the adoption of wind lidar
    • A. Clifton et al., IEA Wind Task 32: Wind Lidar Identifying and Mitigating Barriers to the Adoption of Wind Lidar. Remote Sens. 10, 406 (2018). doi: 10.3390/rs10030406
    • (2018) Remote Sens. , vol.10 , pp. 406
    • Clifton, A.1
  • 58
    • 84864775790 scopus 로고    scopus 로고
    • Measuring a utility-scale turbine wake using the ttuka mobile research radars
    • B. D. Hirth, J. L. Schroeder, W. S. Gunter, J. G. Guynes, Measuring a Utility-Scale Turbine Wake Using the TTUKa Mobile Research Radars. J. Atmos. Ocean. Technol. 29, 765-771 (2012). doi: 10.1175/JTECH-D-12-00039.1
    • (2012) J. Atmos. Ocean. Technol. , vol.29 , pp. 765-771
    • Hirth, B.D.1    Schroeder, J.L.2    Gunter, W.S.3    Guynes, J.G.4
  • 59
    • 85086946768 scopus 로고    scopus 로고
    • Does the wind turbine wake follow the topography? A multi-lidar study in complex terrain
    • R. Menke, N. Vasiljevi?, K. S. Hansen, A. N. Hahmann, J. Mann, Does the wind turbine wake follow the topography? A multi-lidar study in complex terrain. Wind Energy Sci. 3, 681-691 (2018). doi: 10.5194/wes-3-681-2018
    • (2018) Wind Energy Sci. , vol.3 , pp. 681-691
    • Menke, R.1    Vasiljevi, N.2    Hansen, K.S.3    Hahmann, A.N.4    Mann, J.5
  • 60
    • 85049129073 scopus 로고    scopus 로고
    • Wind turbine wake measurements with automatically adjusting scanning trajectories in a multi-Doppler lidar setup
    • N. Wildmann, N. Vasiljevic, T. Gerz, Wind turbine wake measurements with automatically adjusting scanning trajectories in a multi-Doppler lidar setup. Atmos. Meas. Tech. 11, 3801-3814 (2018). doi: 10.5194/amt-11-3801-2018
    • (2018) Atmos. Meas. Tech. , vol.11 , pp. 3801-3814
    • Wildmann, N.1    Vasiljevic, N.2    Gerz, T.3
  • 61
    • 84904596166 scopus 로고    scopus 로고
    • Remote sensing observation used in offshore wind energy
    • C. B. Hasager et al., Remote Sensing Observation Used in Offshore Wind Energy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 1, 67-79 (2008). doi: 10.1109/JSTARS.2008.2002218
    • (2008) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.1 , pp. 67-79
    • Hasager, C.B.1
  • 62
    • 60549102442 scopus 로고    scopus 로고
    • Review of methodologies for offshore wind resource assessment in european seas
    • A. M. Sempreviva, R. J. Barthelmie, S. C. Pryor, Review of Methodologies for Offshore Wind Resource Assessment in European Seas. Surv. Geophys. 29, 471-497 (2008). doi: 10.1007/s10712-008-9050-2
    • (2008) Surv. Geophys. , vol.29 , pp. 471-497
    • Sempreviva, A.M.1    Barthelmie, R.J.2    Pryor, S.C.3
  • 65
    • 85049638046 scopus 로고    scopus 로고
    • Measured aerodynamic forces on a full scale 2MW turbine in comparison with EllipSys3D and HAWC2 simulations
    • H. A. Madsen, N. N. Sørensen, C. Bak, N. Troldborg, G. Pirrung, Measured aerodynamic forces on a full scale 2MW turbine in comparison with EllipSys3D and HAWC2 simulations. J. Phys. Conf. Ser. 1037, 022011 (2018). doi: 10.1088/1742-6596/1037/2/022011
    • (2018) J. Phys. Conf. Ser. , vol.1037 , pp. 022011
    • Madsen, H.A.1    Sørensen, N.N.2    Bak, C.3    Troldborg, N.4    Pirrung, G.5
  • 66
    • 85049650658 scopus 로고    scopus 로고
    • Final results from the EU project AVATAR: Aerodynamic modelling of 10 MW wind turbines
    • J. G. Schepers et al., Final results from the EU project AVATAR: Aerodynamic modelling of 10 MW wind turbines. J. Phys. Conf. Ser. 1037, 022013 (2018). doi: 10.1088/1742-6596/1037/2/022013
    • (2018) J. Phys. Conf. Ser. , vol.1037 , pp. 022013
    • Schepers, J.G.1
  • 68
    • 84964642755 scopus 로고    scopus 로고
    • Fluid-structure interaction computations for geometrically resolved rotor simulations using CFD
    • J. C. Heinz, N. N. Sørensen, F. Zahle, Fluid-structure interaction computations for geometrically resolved rotor simulations using CFD. Wind Energy 19, 2205-2221 (2016). doi: 10.1002/we.1976
    • (2016) Wind Energy , vol.19 , pp. 2205-2221
    • Heinz, J.C.1    Sørensen, N.N.2    Zahle, F.3
  • 69
    • 84993940235 scopus 로고    scopus 로고
    • Fundamental aeroelastic properties of a bend-twist coupled blade section
    • A. R. Stäblein, M. H. Hansen, G. Pirrung, Fundamental aeroelastic properties of a bend-twist coupled blade section. J. Fluids Structures 68, 72-89 (2017). doi: 10.1016/j.jfluidstructs.2016.10.010
    • (2017) J. Fluids Structures , vol.68 , pp. 72-89
    • Stäblein, A.R.1    Hansen, M.H.2    Pirrung, G.3
  • 70
    • 85049628422 scopus 로고    scopus 로고
    • Modal properties and stability of bend-twist coupled wind turbine blades
    • A. R. Stäblein, M. H. Hansen, D. R. Verelst, Modal Properties and Stability of Bend-Twist Coupled Wind Turbine Blades. Wind Energy Sci. 2, 343-360 (2017). doi: 10.5194/wes-2-343-2017
    • (2017) Wind Energy Sci. , vol.2 , pp. 343-360
    • Stäblein, A.R.1    Hansen, M.H.2    Verelst, D.R.3
  • 71
    • 85049641780 scopus 로고    scopus 로고
    • Periodic stability analysis of wind turbines operating in turbulent wind conditions
    • R. Riva, S. Cacciola, C. L. Bottasso, Periodic Stability Analysis of Wind Turbines Operating in Turbulent Wind Conditions. Wind Energy Sci. 1, 177-203 (2016). doi: 10.5194/wes-1-177-2016
    • (2016) Wind Energy Sci. , vol.1 , pp. 177-203
    • Riva, R.1    Cacciola, S.2    Bottasso, C.L.3
  • 72
    • 84989865066 scopus 로고    scopus 로고
    • Ultimate loads and response analysis of a monopile supported offshore wind turbine using fully coupled simulation
    • A. Morató, S. Sriramula, N. Krishnan, J. Nichols, Ultimate loads and response analysis of a monopile supported offshore wind turbine using fully coupled simulation. Renew. Energy 101, 126-143 (2017). doi: 10.1016/j.renene.2016.08.056
    • (2017) Renew. Energy , vol.101 , pp. 126-143
    • Morató, A.1    Sriramula, S.2    Krishnan, N.3    Nichols, J.4
  • 73
    • 85048827182 scopus 로고    scopus 로고
    • Critical assessment of non-linear hydrodynamic load models for a fully flexible monopile offshore wind turbine
    • L. Suja-Thauvin, J. R. Krokstad, E. E. Bachynski, Critical assessment of non-linear hydrodynamic load models for a fully flexible monopile offshore wind turbine. Ocean Eng. 164, 87-104 (2018). doi: 10.1016/j.oceaneng.2018.06.027
    • (2018) Ocean Eng. , vol.164 , pp. 87-104
    • Suja-Thauvin, L.1    Krokstad, J.R.2    Bachynski, E.E.3
  • 74
    • 68149144101 scopus 로고    scopus 로고
    • Dynamics of offshore floating turbines-model development and verification
    • J. Jonkman, Dynamics of Offshore Floating Turbines-Model Development and Verification. Wind Energy 12, 459-492 (2009). doi: 10.1002/we.347
    • (2009) Wind Energy , vol.12 , pp. 459-492
    • Jonkman, J.1
  • 75
    • 85016424390 scopus 로고    scopus 로고
    • A comparison of numerical simulations of breaking wave forces on a monopile structure using two different numerical models based on finite difference and finite volume methods
    • J. Jose, S. J. Choi, K. E. Giljarhus, O. T. Gudmestad, A comparison of numerical simulations of breaking wave forces on a monopile structure using two different numerical models based on finite difference and finite volume methods. Ocean Eng. 137, 78-88 (2017). doi: 10.1016/j.oceaneng.2017.03.045
    • (2017) Ocean Eng. , vol.137 , pp. 78-88
    • Jose, J.1    Choi, S.J.2    Giljarhus, K.E.3    Gudmestad, O.T.4
  • 76
    • 84897038526 scopus 로고    scopus 로고
    • Influence of second-order random wave kinematics on the design loads of offshore wind turbine support structures
    • A. Natarajan, Influence of second-order random wave kinematics on the design loads of offshore wind turbine support structures. Renew. Energy 68, 829-841 (2014). doi: 10.1016/j.renene.2014.02.052
    • (2014) Renew. Energy , vol.68 , pp. 829-841
    • Natarajan, A.1
  • 77
    • 84906235801 scopus 로고    scopus 로고
    • Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth
    • B. T. Paulsen, H. Bredmose, H. B. Bingham, N. G. Jacobsen, Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth. J. Fluid Mech. 755, 1-34 (2014). doi: 10.1017/jfm.2014.386
    • (2014) J. Fluid Mech. , vol.755 , pp. 1-34
    • Paulsen, B.T.1    Bredmose, H.2    Bingham, H.B.3    Jacobsen, N.G.4
  • 78
    • 85021348049 scopus 로고    scopus 로고
    • Gusts and shear within hurricane eyewalls can exceed offshore wind-turbine design standards
    • R. Worsnop, J. K. Lundquist, G. H. Bryan, R. Damiani, W. Musial, Gusts and Shear Within Hurricane Eyewalls Can Exceed Offshore Wind-Turbine Design Standards. Geophys. Res. Lett. 44, 6413-6420 (2017). doi: 10.1002/2017GL073537
    • (2017) Geophys. Res. Lett. , vol.44 , pp. 6413-6420
    • Worsnop, R.1    Lundquist, J.K.2    Bryan, G.H.3    Damiani, R.4    Musial, W.5
  • 80
    • 84902246726 scopus 로고    scopus 로고
    • How can a wind turbine survive a tropical cyclone?
    • T. Han, G. McCann, T. A. Mücke, K. Freudenreich, How can a wind turbine survive a tropical cyclone? Renew. Energy 70, 3-10 (2014). doi: 10.1016/j.renene.2014.02.014
    • (2014) Renew. Energy , vol.70 , pp. 3-10
    • Han, T.1    McCann, G.2    Mücke, T.A.3    Freudenreich, K.4
  • 81
    • 85131862738 scopus 로고    scopus 로고
    • Analysis of wake states by a full?field actuator disc model
    • J. N. Sørensen, W. Z. Shen, X. Munduate, Analysis of wake states by a full?field actuator disc model. Wind Energy 1, 73-88 (1998). doi: 10.1002/(SICI)1099-1824(199812)1:273: AID-WE123.0.CO;2-L
    • (1998) Wind Energy , vol.1 , pp. 73-88
    • Sørensen, J.N.1    Shen, W.Z.2    Munduate, X.3
  • 83
    • 84897942864 scopus 로고    scopus 로고
    • Model tests for a floating wind turbine on three different floaters
    • B. Koo, A. J. Goupee, R. W. Kimball, K. F. Lambrakos, Model Tests for a Floating Wind Turbine on Three Different Floaters. J. Offshore Mech. Arctic Eng. 136, 020907 (2014). doi: 10.1115/1.4024711
    • (2014) J. Offshore Mech. Arctic Eng. , vol.136 , pp. 020907
    • Koo, B.1    Goupee, A.J.2    Kimball, R.W.3    Lambrakos, K.F.4
  • 84
    • 85057162519 scopus 로고    scopus 로고
    • Recycling glass fiber thermoplastic composites from wind turbine blades
    • D. S. Cousins, Y. Suzuki, R. E. Murray, J. R. Samaniuk, A. P. Stebner, Recycling glass fiber thermoplastic composites from wind turbine blades. J. Clean. Prod. 209, 1252-1263 (2019). doi: 10.1016/j.jclepro.2018.10.286
    • (2019) J. Clean. Prod. , vol.209 , pp. 1252-1263
    • Cousins, D.S.1    Suzuki, Y.2    Murray, R.E.3    Samaniuk, J.R.4    Stebner, A.P.5
  • 85
    • 85074269253 scopus 로고    scopus 로고
    • Grid formation involves supporting the fundamental structure of an electric grid system. This includes serving as a reliable voltage source for ac or dc systems and providing frequency signals for ac systems
    • Grid formation involves supporting the fundamental structure of an electric grid system. This includes serving as a reliable voltage source for ac or dc systems and providing frequency signals for ac systems.
  • 86
    • 85020719881 scopus 로고    scopus 로고
    • Model-based receding horizon control of wind farms for secondary frequency regulation
    • C. Shapiro, P. Bauweraerts, J. Meyers, C. Meneveau, D. F. Gayme, Model-based receding horizon control of wind farms for secondary frequency regulation. Wind Energy 20, 1261-1275 (2017). doi: 10.1002/we.2093
    • (2017) Wind Energy , vol.20 , pp. 1261-1275
    • Shapiro, C.1    Bauweraerts, P.2    Meyers, J.3    Meneveau, C.4    Gayme, D.F.5
  • 87
    • 84933054572 scopus 로고    scopus 로고
    • Investigating the impacts of wind generation participation in interconnection frequency response
    • V. Gevorgian, Y. Zhang, E. Ela, Investigating the Impacts of Wind Generation Participation in Interconnection Frequency Response. IEEE Trans. Sustainable Energy 6, 1004-1012 (2015). doi: 10.1109/TSTE.2014.2343836
    • (2015) IEEE Trans. Sustainable Energy , vol.6 , pp. 1004-1012
    • Gevorgian, V.1    Zhang, Y.2    Ela, E.3
  • 88
    • 85026996654 scopus 로고    scopus 로고
    • Active power control of waked wind farms
    • Toulouse, France
    • J. W. van Wingerden, L. Y. Pao, J. Aho, P. Fleming, "Active Power Control of Waked Wind Farms." Proc. IFAC World Congress, Toulouse, France, (2017), pp. 4570-4577. doi: 10.1016/j.ifacol.2017.08.378
    • (2017) Proc. IFAC World Congress , pp. 4570-4577
    • Van Wingerden, J.W.1    Pao, L.Y.2    Aho, J.3    Fleming, P.4
  • 89
    • 84954091136 scopus 로고    scopus 로고
    • Wind plant power optimization through yaw control using a parametric model for wake effects-A CFD simulation study
    • P. M. O. Gebraad et al., Wind plant power optimization through yaw control using a parametric model for wake effects-a CFD simulation study. Wind Energy 19, 95-114 (2014). doi: 10.1002/we.1822
    • (2014) Wind Energy , vol.19 , pp. 95-114
    • Gebraad, P.M.O.1
  • 90
    • 85023619722 scopus 로고    scopus 로고
    • Full-scale field test of wake steering
    • P. Fleming et al., Full-Scale Field Test of Wake Steering. J. Phys. Conf. Ser. 854, 012013 (2017). doi: 10.1088/1742-6596/854/1/012013
    • (2017) J. Phys. Conf. Ser. , vol.854 , pp. 012013
    • Fleming, P.1
  • 91
    • 85054925405 scopus 로고    scopus 로고
    • A simulation study demonstrating the importance oflarge-scale trailing vortices in wake steering
    • P. Fleming et al., A simulation study demonstrating the importance oflarge-scale trailing vortices in wake steering. Wind Energy Sci. 3, 243-255 (2018). doi: 10.5194/wes-3-243-2018
    • (2018) Wind Energy Sci. , vol.3 , pp. 243-255
    • Fleming, P.1
  • 92
    • 85068504926 scopus 로고    scopus 로고
    • A Wind direction estimation using SCADA data with consensus-based optimization
    • J. Annoni et al., A Wind direction estimation using SCADA data with consensus-based optimization. Wind Energy Sci. 4, 355-368 (2019). doi: 10.5194/wes-2018-60
    • (2019) Wind Energy Sci. , vol.4 , pp. 355-368
    • Annoni, J.1
  • 94
    • 84992091197 scopus 로고    scopus 로고
    • Computational fluid dynamics simulation study of active power control in wind plants
    • P. A. Fleming, J. Aho, P. Gebraad, L. Pao, Y. Zhang, "Computational fluid dynamics simulation study of active power control in wind plants" in Proc. American Control Conf. (IEEE, 2016), pp. 1413-1420;.doi: 10.1109/ACC.2016.7525115
    • (2016) Proc. American Control Conf. (IEEE , pp. 1413-1420
    • Fleming, P.A.1    Aho, J.2    Gebraad, P.3    Pao, L.4    Zhang, Y.5
  • 95
    • 85069991557 scopus 로고    scopus 로고
    • An active power control approach for wake-induced load alleviation in a fully developed wind farm boundary layer
    • M. Vali, V. Petrovi?, G. Steinfeld, L. Y. Pao, M. Kühn, An active power control approach for wake-induced load alleviation in a fully developed wind farm boundary layer. Wind Energy Sci. 4, 139-161 (2019). doi: 10.5194/wes-4-139-2019
    • (2019) Wind Energy Sci. , vol.4 , pp. 139-161
    • Vali, M.1    Petrovi, V.2    Steinfeld, G.3    Pao, L.Y.4    Kühn, M.5
  • 96
    • 85060790962 scopus 로고    scopus 로고
    • Comparison of grid following and grid forming control for a high inverter penetration power system
    • IEEE
    • D. Pattabiraman, R. H. Lasseter, T. M. Jahns, "Comparison of grid following and grid forming control for a high inverter penetration power system," in 2018 IEEE Power Energy Society General Meeting (IEEE, 2018);.doi: 10.1109/PESGM.2018.8586162
    • (2018) 2018 IEEE Power Energy Society General Meeting
    • Pattabiraman, D.1    Lasseter, R.H.2    Jahns, T.M.3
  • 97
    • 85049983470 scopus 로고    scopus 로고
    • Can synthetic inertia from wind power stabilize grids?
    • P. Fairley, "Can synthetic inertia from wind power stabilize grids?" IEEE Spectrum (2016); https://spectrum.ieee.org/energywise/energy/renewables/can-synthetic-inertiastabilize-power-grids.
    • (2016) IEEE Spectrum
    • Fairley, P.1
  • 98
    • 85028193123 scopus 로고    scopus 로고
    • Stochastic optimization for unit commitment-A review
    • Q. P. Zheng, J. Wang, A. L. Liu, Stochastic Optimization for Unit Commitment-A Review. IEEE Trans. Power Syst. 30, 1913-1924 (2015). doi: 10.1109/TPWRS.2014.2355204
    • (2015) IEEE Trans. Power Syst. , vol.30 , pp. 1913-1924
    • Zheng, Q.P.1    Wang, J.2    Liu, A.L.3
  • 99
    • 85027979603 scopus 로고    scopus 로고
    • A survey of distributed optimization and control algorithms for electric power systems
    • D. Molzahn et al., A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems. IEEE Trans. Smart Grid 8, 2941-2962 (2017). doi: 10.1109/TSG.2017.2720471
    • (2017) IEEE Trans. Smart Grid , vol.8 , pp. 2941-2962
    • Molzahn, D.1
  • 101
    • 85062786712 scopus 로고    scopus 로고
    • Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modelling approaches
    • N. Helistö, J. Kiviluoma, H. Holttinen, J. D. Lara, B.-M. Hodge, Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modelling approaches. WIREs Energy Environ. 8, e341 (2019). doi: 10.1002/wene.341
    • (2019) WIREs Energy Environ. , vol.8 , pp. e341
    • Helistö, N.1    Kiviluoma, J.2    Holttinen, H.3    Lara, J.D.4    Hodge, B.-M.5
  • 102
    • 85052810840 scopus 로고    scopus 로고
    • A comparison of variation management strategies for wind power integration in different electricity system contexts
    • L. Göransson, F. A. Johnsson, A comparison of variation management strategies for wind power integration in different electricity system contexts. Wind Energy 21, 837-854 (2018). doi: 10.1002/we.2198
    • (2018) Wind Energy , vol.21 , pp. 837-854
    • Göransson, L.1    Johnsson, F.A.2
  • 103
    • 84962269370 scopus 로고    scopus 로고
    • The FAIR Guiding Principles for scientific data management and stewardship
    • PMID: 26978244
    • M. D. Wilkinson et al., The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016). doi: 10.1038/sdata.2016.18; pmid: 26978244
    • (2016) Sci. Data , vol.3 , pp. 160018
    • Wilkinson, M.D.1
  • 104
    • 85074272086 scopus 로고    scopus 로고
    • Taxonomy and metadata for wind energy research & development
    • A. M. Sempreviva et al., Taxonomy and metadata for wind energy research & development. Version 1, Zenodo (2017). doi: 10.5281/ZENODO.1199489
    • (2017) Version 1, Zenodo
    • Sempreviva, A.M.1
  • 105
    • 85074276049 scopus 로고    scopus 로고
    • European Technology & Innovation Platform on Wind Energy (ETIP Wind) Steering Committee, "When wind goes digital" (ETIP Wind
    • European Technology & Innovation Platform on Wind Energy (ETIP Wind) Steering Committee, "When wind goes digital" (ETIP Wind, 2014); https://etipwind.eu/news/wind-goes-digital/.
    • (2014)
  • 106
    • 85021817099 scopus 로고    scopus 로고
    • Data science: A new paradigm in the age of big-data science and analytics
    • C. E. Concolato, L. M. Chen, Data science: A new paradigm in the age of big-data science and analytics. New Math. Nat. Computation 13, 119-143 (2017). doi: 10.1142/S1793005717400038
    • (2017) New Math. Nat. Computation , vol.13 , pp. 119-143
    • Concolato, C.E.1    Chen, L.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.