-
2
-
-
85015162945
-
Big data analytics services for enhancing business intelligence
-
Z. Sun, L. Sun and K. Strang, Big data analytics services for enhancing business intelligence, Journal of Computer Information Systems (2016), doi:10.1080/08874417.2016.1220239.
-
(2016)
Journal of Computer Information Systems
-
-
Sun, Z.1
Sun, L.2
Strang, K.3
-
3
-
-
84870402156
-
Big-Data computing: Creating revolutionary breakthroughs in commerce, science, and society
-
R. E. Bryant, R. H. Katz and E. D. Lazowska, Big-Data computing: Creating revolutionary breakthroughs in commerce, science, and society, in Computing Research Consortium (2008), http://cra.org/ccc/wp-content/uploads/sites/2/2015/05/Big-Data.pdf.
-
(2008)
Computing Research Consortium
-
-
Bryant, R.E.1
Katz, R.H.2
Lazowska, E.D.3
-
4
-
-
0035297750
-
Data science: An action plan for expanding the technical areas of the field of statistics
-
W. S. Cleveland, Data science: An action plan for expanding the technical areas of the field of statistics, International Statistical Review/Revue Internationale de Statistique 69(1) (2001) 21-26.
-
(2001)
International Statistical Review/Revue Internationale de Statistique
, vol.69
, Issue.1
, pp. 21-26
-
-
Cleveland, W.S.1
-
5
-
-
84987649259
-
-
NYU School of Business, New York
-
V. Dhar, Data Science and Prediction (2012), NYU School of Business, New York, https://archive.nyu.edu/bitstream/2451/31553/2/Dhar-DataScience.pdf.
-
(2012)
Data Science and Prediction
-
-
Dhar, V.1
-
6
-
-
85021804091
-
K Means of cloud computing: Map-Reduce, DVM, and windows azure
-
L. Gu, Z. Sheng, Z. Ma, X. Gao and C. Zhang, K Means of cloud computing: Map-Reduce, DVM, and windows azure, in Proc. Fourth Int. Conf. Cloud Computing, GRIDs, and Virtualization (2013), pp. 1-6.
-
(2013)
Proc. Fourth Int. Conf. Cloud Computing, GRIDs, and Virtualization
, pp. 1-6
-
-
Gu, L.1
Sheng, Z.2
Ma, Z.3
Gao, X.4
Zhang, C.5
-
7
-
-
84974809076
-
A machine learning approach to predicting blood glucose levels for diabetes management
-
K. Plis, R. Bunescu, C. Marling, J. Shubrook and F. Schwartz, A machine learning approach to predicting blood glucose levels for diabetes management, Association for the Advancement of Artificial Intelligence (www.aaai.org) (2014).
-
(2014)
Association for the Advancement of Artificial Intelligence
-
-
Plis, K.1
Bunescu, R.2
Marling, C.3
Shubrook, J.4
Schwartz, F.5
-
9
-
-
85002062888
-
A survey of cloudbased network intrusion detection analysis
-
N. Keagan, S. W. Ji, A. Chaudhary, C. Concolato, B. Yu and D. Jeong, A survey of cloudbased network intrusion detection analysis, Human-Centric Computing and Information Sciences 6 (2016) 19.
-
(2016)
Human-Centric Computing and Information Sciences
, vol.6
, pp. 19
-
-
Keagan, N.1
Ji, S.W.2
Chaudhary, A.3
Concolato, C.4
Yu, B.5
Jeong, D.6
-
11
-
-
37549003336
-
Map-Reduce: Simplified data processing on large clusters
-
J. Dean and S. Ghemawat, Map-Reduce: Simplified data processing on large clusters, Communications of the ACM 51(1) (2008) 107-113.
-
(2008)
Communications of the ACM
, vol.51
, Issue.1
, pp. 107-113
-
-
Dean, J.1
Ghemawat, S.2
-
13
-
-
77954202405
-
EScience: A transformed scientific method
-
eds. T. Hey, S. Tansley and K. Tolle (Microsoft Research, Redmond)
-
T. Hey, S. Tansley, K. Tolle and J. Greyone, eScience: A transformed scientific method, in The Fourth Paradigm: Data-Intensive Scientific Discovery, eds. T. Hey, S. Tansley and K. Tolle (Microsoft Research, Redmond, 2009), pp. xvii-xxxi, http://www.slideshare. net/dullhunk/escience-a-transformed-scientific-method.
-
(2009)
The Fourth Paradigm: Data-Intensive Scientific Discovery
, pp. xvii-xxxi
-
-
Hey, T.1
Tansley, S.2
Tolle, K.3
Greyone, J.4
-
14
-
-
85073682542
-
Big-Data, New epistemologies and paradigm shifts
-
R. Kitchin, Big-Data, New epistemologies and paradigm shifts, Big-Data & Society, 1(1) (2014) 112.
-
(2014)
Big-Data & Society
, vol.1
, Issue.1
, pp. 112
-
-
Kitchin, R.1
-
15
-
-
84879762326
-
Efficient market making via convex optimization, and a connection to online learning
-
J. Abernethy, Y. Chen and J. W. Vaughan, Efficient market making via convex optimization, and a connection to online learning, ACM Transactions on Economics and Computation 1(2) (2013) 12.
-
(2013)
ACM Transactions on Economics and Computation
, vol.1
, Issue.2
, pp. 12
-
-
Abernethy, J.1
Chen, Y.2
Vaughan, J.W.3
-
16
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Edinburgh, Scotland, UK
-
Q. V. Le, Marc'Aurelio Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean and A. Y. Ng, Building high-level features using large scale unsupervised learning, in Proc. 29th Int. Conf. Machine Learning, Edinburgh, Scotland, UK (2012).
-
(2012)
Proc. 29th Int. Conf. Machine Learning
-
-
Le, Q.V.1
Ranzato, M.2
Monga, R.3
Devin, M.4
Chen, K.5
Corrado, G.S.6
Dean, J.7
Ng, A.Y.8
-
18
-
-
0003684449
-
-
2nd edn. (Springer, New York)
-
T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. (Springer, New York, 2009).
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
20
-
-
77951528523
-
The power of convex relaxation: Near-optimal matrix completion
-
E. J. Candes and T. Tao, The power of convex relaxation: Near-optimal matrix completion, IEEE Transactions on Information Theory 56 (2010) 2053-2080.
-
(2010)
IEEE Transactions on Information Theory
, vol.56
, pp. 2053-2080
-
-
Candes, E.J.1
Tao, T.2
-
21
-
-
41949137770
-
Unsupervised segmentation of natural images via lossy data compression
-
A. Yang, J. Wright, Y. Ma and S. Sastry, Unsupervised segmentation of natural images via lossy data compression, Computer Vision and Image Understanding, 110(2) (2008) 212-225.
-
(2008)
Computer Vision and Image Understanding
, vol.110
, Issue.2
, pp. 212-225
-
-
Yang, A.1
Wright, J.2
Ma, Y.3
Sastry, S.4
-
22
-
-
84856009825
-
A simpler approach to matrix completion
-
arXiv:0910.0651v2
-
B. Recht, A simpler approach to matrix completion, Journal of Machine Learning Research 12 (2011) 3413-3430, arXiv:0910.0651v2.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 3413-3430
-
-
Recht, B.1
-
25
-
-
84954302559
-
-
University of Wisconsin, Madison, data, Technical Report, University of Wisconsin, Madison
-
L. Balzano, R. Nowak, A. Szlam and B. Recht, k-subspaces with missing data, University of Wisconsin, Madison, data, Technical Report ECE-11-02, University of Wisconsin, Madison (2011).
-
(2011)
K-subspaces with Missing Data
-
-
Balzano, L.1
Nowak, R.2
Szlam, A.3
Recht, B.4
-
26
-
-
80053033125
-
-
Johns Hopkins Technical Report
-
R. Vidal, A tutorial on subspace clustering, Johns Hopkins Technical Report (2010), http://www.cis. jhu.edu/rvidal/publications/SPM - Tutorial - Final.pdf.
-
(2010)
A Tutorial on Subspace Clustering
-
-
Vidal, R.1
-
28
-
-
0003487647
-
-
(Springer-Verlag, New York)
-
F. P. Preparat and M. I. Shamos, Computational Geometry: An Introduction, Texts and Monographs in Computer Science (Springer-Verlag, New York, 1985), pp. 108-110.
-
(1985)
Computational Geometry: An Introduction, Texts and Monographs in Computer Science
, pp. 108-110
-
-
Preparat, F.P.1
Shamos, M.I.2
-
31
-
-
0029652445
-
The wake-sleep algorithm for unsupervised neural networks
-
G. E. Hinton, P. Dayan, B. J. Frey and R. M. Neal, The wake-sleep algorithm for unsupervised neural networks, Science 268 (1995) 1558-1161.
-
(1995)
Science
, vol.268
, pp. 1161-1558
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
33
-
-
84921476116
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, in Proc. ECCV'14 (2014).
-
(2014)
Proc. ECCV'14
-
-
Zeiler, M.D.1
Fergus, R.2
-
34
-
-
0033078667
-
Possibility-based fuzzy neural networks and their application to image processing
-
L. Chen, D. H. Cooley and J. Zhang, Possibility-based fuzzy neural networks and their application to image processing, IEEE Transactions on Systems, Man, and Cybernetics, 29(1) (1999) 119-126.
-
(1999)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.29
, Issue.1
, pp. 119-126
-
-
Chen, L.1
Cooley, D.H.2
Zhang, J.3
-
36
-
-
84864262965
-
Fuzzy joins using mapreduce
-
F. N. Afrati, A. D. Sarma, D. Menestrina, A. G. Parameswaran and J. D. Ullman. Fuzzy joins using mapreduce, in Proc. ICDE'12 (2012), pp. 498-509.
-
(2012)
Proc. ICDE'12
, pp. 498-509
-
-
Afrati, F.N.1
Sarma, A.D.2
Menestrina, D.3
Parameswaran, A.G.4
Ullman, J.D.5
-
39
-
-
84957426178
-
Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry
-
M. Offroy and L. Duponchel, Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry, Analytica Chimica Acta 910 (2016) 1-11.
-
(2016)
Analytica Chimica Acta
, vol.910
, pp. 1-11
-
-
Offroy, M.1
Duponchel, L.2
-
40
-
-
85076471198
-
Topological methods for the analysis of high dimensional data sets and 3D object recognition
-
Prague
-
G. Singh, F. Mémoli and G. Carlsson, Topological methods for the analysis of high dimensional data sets and 3D object recognition, Europe Symp. Point Based Graphics, Prague (2007).
-
(2007)
Europe Symp. Point Based Graphics
-
-
Singh, G.1
Mémoli, F.2
Carlsson, G.3
-
41
-
-
84888424872
-
Data science and prediction
-
V. Dhar, Data science and prediction, Communications of the ACM 56 (2013) 12-64.
-
(2013)
Communications of the ACM
, vol.56
, pp. 12-64
-
-
Dhar, V.1
-
42
-
-
85128638389
-
Big data analysis: Issues and challenges
-
V. Bhardwaj and R. Johari, Big data analysis: Issues and challenges, IEEE Int. Conf. Electrical, Electronics, Signals, Communication and Optimization (EESCO) (2015), pp. 1-3.
-
(2015)
IEEE Int. Conf. Electrical, Electronics, Signals, Communication and Optimization (EESCO)
, pp. 1-3
-
-
Bhardwaj, V.1
Johari, R.2
-
43
-
-
85015183931
-
An architecture for the deployment of statistical models for the big data era
-
J. Heit, J. Liu and M. Shah, An architecture for the deployment of statistical models for the big data era, in Proc. 2016 IEEE Int. Conf. Big Data (Big Data) (2016), pp. 1377-1384.
-
(2016)
Proc. 2016 IEEE Int. Conf. Big Data (Big Data)
, pp. 1377-1384
-
-
Heit, J.1
Liu, J.2
Shah, M.3
-
44
-
-
84958291921
-
TensorFlow: Biology's gateway to deep learning?
-
L. Rampasek and A. Goldenberg, TensorFlow: Biology's gateway to deep learning? Cell Systems 2(1) (2016) 12-14.
-
(2016)
Cell Systems
, vol.2
, Issue.1
, pp. 12-14
-
-
Rampasek, L.1
Goldenberg, A.2
|