메뉴 건너뛰기




Volumn 13, Issue 2, 2017, Pages 119-143

Data Science: A New Paradigm in the Age of Big-Data Science and Analytics

Author keywords

3V; AI; Big Data; classifications; Data Analytics; Data Science; data structure; debate on Big Data Science; Hadoop and Spark; IT industry; machine learning; proposal on scientific nomenclature; technology assessment

Indexed keywords


EID: 85021817099     PISSN: 17930057     EISSN: 17937027     Source Type: Journal    
DOI: 10.1142/S1793005717400038     Document Type: Article
Times cited : (12)

References (46)
  • 2
    • 85015162945 scopus 로고    scopus 로고
    • Big data analytics services for enhancing business intelligence
    • Z. Sun, L. Sun and K. Strang, Big data analytics services for enhancing business intelligence, Journal of Computer Information Systems (2016), doi:10.1080/08874417.2016.1220239.
    • (2016) Journal of Computer Information Systems
    • Sun, Z.1    Sun, L.2    Strang, K.3
  • 3
    • 84870402156 scopus 로고    scopus 로고
    • Big-Data computing: Creating revolutionary breakthroughs in commerce, science, and society
    • R. E. Bryant, R. H. Katz and E. D. Lazowska, Big-Data computing: Creating revolutionary breakthroughs in commerce, science, and society, in Computing Research Consortium (2008), http://cra.org/ccc/wp-content/uploads/sites/2/2015/05/Big-Data.pdf.
    • (2008) Computing Research Consortium
    • Bryant, R.E.1    Katz, R.H.2    Lazowska, E.D.3
  • 4
  • 5
    • 84987649259 scopus 로고    scopus 로고
    • NYU School of Business, New York
    • V. Dhar, Data Science and Prediction (2012), NYU School of Business, New York, https://archive.nyu.edu/bitstream/2451/31553/2/Dhar-DataScience.pdf.
    • (2012) Data Science and Prediction
    • Dhar, V.1
  • 11
    • 37549003336 scopus 로고    scopus 로고
    • Map-Reduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat, Map-Reduce: Simplified data processing on large clusters, Communications of the ACM 51(1) (2008) 107-113.
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 13
    • 77954202405 scopus 로고    scopus 로고
    • EScience: A transformed scientific method
    • eds. T. Hey, S. Tansley and K. Tolle (Microsoft Research, Redmond)
    • T. Hey, S. Tansley, K. Tolle and J. Greyone, eScience: A transformed scientific method, in The Fourth Paradigm: Data-Intensive Scientific Discovery, eds. T. Hey, S. Tansley and K. Tolle (Microsoft Research, Redmond, 2009), pp. xvii-xxxi, http://www.slideshare. net/dullhunk/escience-a-transformed-scientific-method.
    • (2009) The Fourth Paradigm: Data-Intensive Scientific Discovery , pp. xvii-xxxi
    • Hey, T.1    Tansley, S.2    Tolle, K.3    Greyone, J.4
  • 14
    • 85073682542 scopus 로고    scopus 로고
    • Big-Data, New epistemologies and paradigm shifts
    • R. Kitchin, Big-Data, New epistemologies and paradigm shifts, Big-Data & Society, 1(1) (2014) 112.
    • (2014) Big-Data & Society , vol.1 , Issue.1 , pp. 112
    • Kitchin, R.1
  • 15
    • 84879762326 scopus 로고    scopus 로고
    • Efficient market making via convex optimization, and a connection to online learning
    • J. Abernethy, Y. Chen and J. W. Vaughan, Efficient market making via convex optimization, and a connection to online learning, ACM Transactions on Economics and Computation 1(2) (2013) 12.
    • (2013) ACM Transactions on Economics and Computation , vol.1 , Issue.2 , pp. 12
    • Abernethy, J.1    Chen, Y.2    Vaughan, J.W.3
  • 20
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near-optimal matrix completion
    • E. J. Candes and T. Tao, The power of convex relaxation: Near-optimal matrix completion, IEEE Transactions on Information Theory 56 (2010) 2053-2080.
    • (2010) IEEE Transactions on Information Theory , vol.56 , pp. 2053-2080
    • Candes, E.J.1    Tao, T.2
  • 21
    • 41949137770 scopus 로고    scopus 로고
    • Unsupervised segmentation of natural images via lossy data compression
    • A. Yang, J. Wright, Y. Ma and S. Sastry, Unsupervised segmentation of natural images via lossy data compression, Computer Vision and Image Understanding, 110(2) (2008) 212-225.
    • (2008) Computer Vision and Image Understanding , vol.110 , Issue.2 , pp. 212-225
    • Yang, A.1    Wright, J.2    Ma, Y.3    Sastry, S.4
  • 22
    • 84856009825 scopus 로고    scopus 로고
    • A simpler approach to matrix completion
    • arXiv:0910.0651v2
    • B. Recht, A simpler approach to matrix completion, Journal of Machine Learning Research 12 (2011) 3413-3430, arXiv:0910.0651v2.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 3413-3430
    • Recht, B.1
  • 25
    • 84954302559 scopus 로고    scopus 로고
    • University of Wisconsin, Madison, data, Technical Report, University of Wisconsin, Madison
    • L. Balzano, R. Nowak, A. Szlam and B. Recht, k-subspaces with missing data, University of Wisconsin, Madison, data, Technical Report ECE-11-02, University of Wisconsin, Madison (2011).
    • (2011) K-subspaces with Missing Data
    • Balzano, L.1    Nowak, R.2    Szlam, A.3    Recht, B.4
  • 26
    • 80053033125 scopus 로고    scopus 로고
    • Johns Hopkins Technical Report
    • R. Vidal, A tutorial on subspace clustering, Johns Hopkins Technical Report (2010), http://www.cis. jhu.edu/rvidal/publications/SPM - Tutorial - Final.pdf.
    • (2010) A Tutorial on Subspace Clustering
    • Vidal, R.1
  • 31
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised neural networks
    • G. E. Hinton, P. Dayan, B. J. Frey and R. M. Neal, The wake-sleep algorithm for unsupervised neural networks, Science 268 (1995) 1558-1161.
    • (1995) Science , vol.268 , pp. 1161-1558
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 33
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, in Proc. ECCV'14 (2014).
    • (2014) Proc. ECCV'14
    • Zeiler, M.D.1    Fergus, R.2
  • 34
    • 0033078667 scopus 로고    scopus 로고
    • Possibility-based fuzzy neural networks and their application to image processing
    • L. Chen, D. H. Cooley and J. Zhang, Possibility-based fuzzy neural networks and their application to image processing, IEEE Transactions on Systems, Man, and Cybernetics, 29(1) (1999) 119-126.
    • (1999) IEEE Transactions on Systems, Man, and Cybernetics , vol.29 , Issue.1 , pp. 119-126
    • Chen, L.1    Cooley, D.H.2    Zhang, J.3
  • 39
    • 84957426178 scopus 로고    scopus 로고
    • Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry
    • M. Offroy and L. Duponchel, Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry, Analytica Chimica Acta 910 (2016) 1-11.
    • (2016) Analytica Chimica Acta , vol.910 , pp. 1-11
    • Offroy, M.1    Duponchel, L.2
  • 40
    • 85076471198 scopus 로고    scopus 로고
    • Topological methods for the analysis of high dimensional data sets and 3D object recognition
    • Prague
    • G. Singh, F. Mémoli and G. Carlsson, Topological methods for the analysis of high dimensional data sets and 3D object recognition, Europe Symp. Point Based Graphics, Prague (2007).
    • (2007) Europe Symp. Point Based Graphics
    • Singh, G.1    Mémoli, F.2    Carlsson, G.3
  • 41
    • 84888424872 scopus 로고    scopus 로고
    • Data science and prediction
    • V. Dhar, Data science and prediction, Communications of the ACM 56 (2013) 12-64.
    • (2013) Communications of the ACM , vol.56 , pp. 12-64
    • Dhar, V.1
  • 43
    • 85015183931 scopus 로고    scopus 로고
    • An architecture for the deployment of statistical models for the big data era
    • J. Heit, J. Liu and M. Shah, An architecture for the deployment of statistical models for the big data era, in Proc. 2016 IEEE Int. Conf. Big Data (Big Data) (2016), pp. 1377-1384.
    • (2016) Proc. 2016 IEEE Int. Conf. Big Data (Big Data) , pp. 1377-1384
    • Heit, J.1    Liu, J.2    Shah, M.3
  • 44
    • 84958291921 scopus 로고    scopus 로고
    • TensorFlow: Biology's gateway to deep learning?
    • L. Rampasek and A. Goldenberg, TensorFlow: Biology's gateway to deep learning? Cell Systems 2(1) (2016) 12-14.
    • (2016) Cell Systems , vol.2 , Issue.1 , pp. 12-14
    • Rampasek, L.1    Goldenberg, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.