메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1955-1960

Analyzing the behavior of visual question answering models

Author keywords

[No Author keywords available]

Indexed keywords

DEEP LEARNING;

EID: 85072842417     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/d16-1203     Document Type: Conference Paper
Times cited : (273)

References (26)
  • 1
    • 84985013144 scopus 로고    scopus 로고
    • Deep compositional question answering with neural module networks
    • 1
    • Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016a. Deep compositional question answering with neural module networks. In CVPR. 1
    • (2016) CVPR
    • Andreas, J.1    Rohrbach, M.2    Darrell, T.3    Klein, D.4
  • 2
    • 84993660571 scopus 로고    scopus 로고
    • Learning to compose neural networks for question answering
    • 1
    • Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016b. Learning to compose neural networks for question answering. In NAACL. 1
    • (2016) NAACL
    • Andreas, J.1    Rohrbach, M.2    Darrell, T.3    Klein, D.4
  • 5
    • 85044506279 scopus 로고    scopus 로고
    • Multimodal compact bilinear pooling for visual question answering and visual grounding
    • 1, 2
    • Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus Rohrbach. 2016. Multimodal compact bilinear pooling for visual question answering and visual grounding. In EMNLP. 1, 2
    • (2016) EMNLP
    • Fukui, A.1    Park, D.H.2    Yang, D.3    Rohrbach, A.4    Darrell, T.5    Rohrbach, M.6
  • 6
    • 84973873525 scopus 로고    scopus 로고
    • A visual turing test for computer vision systems
    • 1
    • Donald Geman, Stuart Geman, Neil Hallonquist, and Laurent Younes. 2014. A Visual Turing Test for Computer Vision Systems. In PNAS. 1
    • (2014) PNAS
    • Geman, D.1    Geman, S.2    Hallonquist, N.3    Younes, L.4
  • 7
    • 84887374674 scopus 로고    scopus 로고
    • Diagnosing error in object detectors
    • 2
    • Derek Hoiem, Yodsawalai Chodpathumwan, and Qieyun Dai. 2012. Diagnosing error in object detectors. In ECCV. 2
    • (2012) ECCV
    • Hoiem, D.1    Chodpathumwan, Y.2    Dai, Q.3
  • 10
    • 84986300506 scopus 로고    scopus 로고
    • Answer-type prediction for visual question answering
    • 1
    • Kushal Kafle and Christopher Kanan. 2016. Answer-type prediction for visual question answering. In CVPR. 1
    • (2016) CVPR
    • Kafle, K.1    Kanan, C.2
  • 11
    • 84959876313 scopus 로고    scopus 로고
    • Visualizing and understanding recurrent networks
    • 1
    • Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2016. Visualizing and understanding recurrent networks. In ICLR Workshop. 1
    • (2016) ICLR Workshop
    • Karpathy, A.1    Johnson, J.2    Li, F.-F.3
  • 14
    • 85018917850 scopus 로고    scopus 로고
    • Hierarchical question-image co-attention for visual question answering
    • 1, 2
    • Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. 2016. Hierarchical question-image co-attention for visual question answering. In NIPS. 1, 2
    • (2016) NIPS
    • Lu, J.1    Yang, J.2    Batra, D.3    Parikh, D.4
  • 15
    • 84937822746 scopus 로고    scopus 로고
    • A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input
    • 1
    • Mateusz Malinowski and Mario Fritz. 2014. A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input. In NIPS. 1
    • (2014) NIPS
    • Malinowski, M.1    Fritz, M.2
  • 16
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • 3
    • Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. In ICLR. 3
    • (2013) ICLR
    • Mikolov, T.1    Chen, K.2    Corrado, G.3    Dean, J.4
  • 19
    • 84986327457 scopus 로고    scopus 로고
    • Where to look: Focus regions for visual question answering
    • 1
    • Kevin J. Shih, Saurabh Singh, and Derek Hoiem. 2016. Where to look: Focus regions for visual question answering. In CVPR. 1
    • (2016) CVPR
    • Shih, K.J.1    Singh, S.2    Hoiem, D.3
  • 21
    • 84986320870 scopus 로고    scopus 로고
    • Ask me Anything: Free-form visual question answering based on knowledge from external sources
    • 1
    • Qi Wu, Peng Wang, Chunhua Shen, Anton van den Hengel, and Anthony R. Dick. 2016. Ask me anything: Free-form visual question answering based on knowledge from external sources. In CVPR. 1
    • (2016) CVPR
    • Wu, Q.1    Wang, P.2    Shen, C.3    Van Den Hengel, A.4    Dick, A.R.5
  • 22
    • 84999008900 scopus 로고    scopus 로고
    • Dynamic memory networks for visual and textual question answering
    • 1
    • Caiming Xiong, Stephen Merity, and Richard Socher. 2016. Dynamic memory networks for visual and textual question answering. In ICML. 1
    • (2016) ICML
    • Xiong, C.1    Merity, S.2    Socher, R.3
  • 23
    • 85035008367 scopus 로고    scopus 로고
    • Ask, attend and answer: Exploring question-guided spatial attention for visual question answering
    • 1
    • Huijuan Xu and Kate Saenko. 2016. Ask, attend and answer: Exploring question-guided spatial attention for visual question answering. In ECCV. 1
    • (2016) ECCV
    • Xu, H.1    Saenko, K.2
  • 24
    • 84986334021 scopus 로고    scopus 로고
    • Stacked attention networks for image question answering
    • 1, 2
    • Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alexander J. Smola. 2016. Stacked attention networks for image question answering. In CVPR. 1, 2
    • (2016) CVPR
    • Yang, Z.1    He, X.2    Gao, J.3    Deng, L.4    Smola, A.J.5
  • 25
    • 84986278354 scopus 로고    scopus 로고
    • Yin and Yang: Balancing and answering binary visual questions
    • 5
    • Peng Zhang, Yash Goyal, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. 2016. Yin and Yang: Balancing and answering binary visual questions. In CVPR. 5
    • (2016) CVPR
    • Zhang, P.1    Goyal, Y.2    Summers-Stay, D.3    Batra, D.4    Parikh, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.