메뉴 건너뛰기




Volumn 17, Issue 4, 2019, Pages 268-275

Real-time epidemic forecasting: challenges and opportunities

Author keywords

Disease modeling; Epidemic management response; Infectious diseases; Surveillance

Indexed keywords

EPIDEMIC; FORECASTING; HEALTH SURVEY; HUMAN; INFORMATION PROCESSING; MACHINE LEARNING; PUBLIC HEALTH; STATISTICAL MODEL;

EID: 85071233923     PISSN: 23265094     EISSN: 23265108     Source Type: Journal    
DOI: 10.1089/hs.2019.0022     Document Type: Article
Times cited : (102)

References (46)
  • 1
    • 85059245670 scopus 로고    scopus 로고
    • Ramping up the response to Ebola
    • Nuzzo JB, Inglesby TV. Ramping up the response to Ebola. N Engl J Med 2018;37926:2490-2491.
    • (2018) N Engl J Med , vol.379 , Issue.26 , pp. 2490-2491
    • Nuzzo, J.B.1    Inglesby, T.V.2
  • 2
    • 85056803078 scopus 로고    scopus 로고
    • Mapping yellow fever virus in Brazil
    • Friedrich MJ. Mapping yellow fever virus in Brazil. JAMA 2018;32019:1969.
    • (2018) JAMA , Issue.320 , pp. 19
    • Friedrich, M.J.1
  • 3
    • 85066960608 scopus 로고    scopus 로고
    • Outbreak investigation of Nipah virus disease in Kerala, India, 2018
    • Arunkumar G, Chandni R, Mourya DT, et al. Outbreak investigation of Nipah virus disease in Kerala, India, 2018. J Infect Dis 2019;21912:1867-1878.
    • (2019) J Infect Dis , vol.219 , Issue.12 , pp. 1867-1878
    • Arunkumar, G.1    Chandni, R.2    Mourya, D.T.3
  • 4
    • 84986573066 scopus 로고    scopus 로고
    • Eco-social processes influencing infectious disease emergence and spread
    • Jones BA, Betson M, Pfeiffer DU. Eco-social processes influencing infectious disease emergence and spread. Parasitology 2017;1441:26-36.
    • (2017) Parasitology , vol.144 , Issue.1 , pp. 26-36
    • Jones, B.A.1    Betson, M.2    Pfeiffer, D.U.3
  • 5
    • 84929502037 scopus 로고    scopus 로고
    • Effect of climate change on vectorborne disease risk in the UK
    • Medlock JM, Leach SA. Effect of climate change on vectorborne disease risk in the UK. Lancet Infect Dis 2015;156: 721-730.
    • (2015) Lancet Infect Dis , vol.15 , Issue.6 , pp. 721-730
    • Medlock, J.M.1    Leach, S.A.2
  • 6
    • 85043470133 scopus 로고    scopus 로고
    • Infection forecasts powered by big data
    • Eisenstein M. Infection forecasts powered by big data. Nature 2018;5557695:S2-S4.
    • (2018) Nature , vol.555 , Issue.7695 , pp. 2-4
    • Eisenstein, M.1
  • 7
    • 85016071260 scopus 로고    scopus 로고
    • Forecasting Ebola with a regression transmission model
    • Asher J. Forecasting Ebola with a regression transmission model. Epidemics 2018;22:50-55.
    • (2018) Epidemics , Issue.22 , pp. 50-55
    • Asher, J.1
  • 8
    • 85029747062 scopus 로고    scopus 로고
    • The RAPIDD Ebola forecasting challenge: Synthesis and lessons learnt
    • Viboud C, Sun K, Gaffey R, et al. The RAPIDD Ebola forecasting challenge: synthesis and lessons learnt. Epidemics 2018;22:13-21.
    • (2018) Epidemics , Issue.22 , pp. 13-21
    • Viboud, C.1    Sun, K.2    Gaffey, R.3
  • 9
    • 85071275576 scopus 로고    scopus 로고
    • About ProMEDmail. Accessed July
    • International Society for Infectious Diseases. About ProMEDmail. https://www.promedmail.org/aboutus/. Accessed July 9, 2019.
    • (2019) International Society for Infectious Diseases , vol.9
  • 10
    • 85071243658 scopus 로고    scopus 로고
    • Accessed July
    • HealthMap. About HealthMap. http://www.diseasedaily. org/about. Accessed July 9, 2019.
    • (2019) HealthMap. About HealthMap , vol.9
  • 11
    • 85071256074 scopus 로고    scopus 로고
    • Accessed July
    • World Health Organization. https://www.who.int/. Accessed July 9, 2019.
    • (2019) World Health Organization , vol.9
  • 12
    • 85071264364 scopus 로고    scopus 로고
    • Accessed July
    • Flowminder. http://flowminder.org. Accessed July 9, 2019.
    • (2019) Flowminder , vol.9
  • 13
    • 85071234896 scopus 로고    scopus 로고
    • Accessed July
    • Flirt. https://flirt.eha.io. Accessed July 9, 2019.
    • (2019) Flirt , vol.9
  • 14
    • 85071234580 scopus 로고    scopus 로고
    • Accessed July
    • Global Health Security Agenda. https://www.ghsagenda.org/. Accessed July 9, 2019.
    • (2019) Global Health Security Agenda , vol.9
  • 15
    • 85071235152 scopus 로고    scopus 로고
    • Accessed July
    • UNICEF. https://www.unicef.org/. Accessed July 9, 2019.
    • (2019) UNICEF , vol.9
  • 17
    • 85071241008 scopus 로고    scopus 로고
    • Accessed July
    • NASA Earthdata. https://earthdata.nasa.gov/. Accessed July 9, 2019.
    • (2019) NASA Earthdata , vol.9
  • 18
    • 85071273692 scopus 로고    scopus 로고
    • Accessed July
    • Natural Earth. http://www.naturalearthdata.com. Accessed July 9, 2019.
    • (2019) Natural Earth , vol.9
  • 19
    • 85071265510 scopus 로고    scopus 로고
    • Healthsites.io: The global healthsites mapping project
    • Hostettler S Najih Besson S, Bolay JC, eds. Technologies for Development: From Innovation to Social Impact. Cham, Switzerland, Springer
    • Saameli R, Kalubi D, Herringer M, Sutton T, de Roodenbeke E. Healthsites.io: The Global Healthsites Mapping Project. In: Hostettler S, Najih Besson S, Bolay JC, eds. Technologies for Development: From Innovation to Social Impact. Cham, Switzerland: UNESCO, Springer; 2018.
    • (2018) UNESCO
    • Saameli, R.1    Kalubi, D.2    Herringer, M.3    Sutton, T.4    De Roodenbeke, E.5
  • 20
    • 85071228251 scopus 로고    scopus 로고
    • Accessed July
    • Flowminder. http://flowminder.org. Accessed July 9, 2019.
    • (2019) Flowminder , vol.9
  • 21
    • 85071226420 scopus 로고    scopus 로고
    • Geographic Information Science & Technology Accessed July
    • Oak Ridge National Laboratory. LandScan_: Geographic Information Science & Technology. https://landscan.ornl. gov/. Accessed July 9, 2019.
    • (2019) Oak Ridge National Laboratory. LandScan , vol.9
  • 22
    • 85071256232 scopus 로고    scopus 로고
    • Mapping population distributions Accessed July
    • WorldPop. Mapping population distributions. http://www. worldpop.org.uk/. Accessed July 9, 2019.
    • (2019) WorldPop , vol.9
  • 23
    • 85071278924 scopus 로고    scopus 로고
    • Disaster maps. Accessed July
    • Facebook Data for Good. Disaster maps. https://dataforgood. fb.com/tools/disaster-maps/. Accessed July 9, 2019.
    • (2019) Facebook Data for Good , vol.9
  • 24
    • 66249102261 scopus 로고    scopus 로고
    • Digital disease detection-harnessing the web for public health surveillance
    • Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection-harnessing the web for public health surveillance. N Engl J Med 2009;36021:2153-2155, 2157.
    • (2009) N Engl J Med , vol.360 , Issue.21 , pp. 2153-2155
    • Brownstein, J.S.1    Freifeld, C.C.2    Madoff, L.C.3
  • 25
    • 85071228695 scopus 로고    scopus 로고
    • Recent disease incidents. Accessed July
    • Medisys. Recent disease incidents. http://medisys.newsbrief. eu/medisys/helsinkiedition/en/home.html. Accessed July 9, 2019.
    • (2019) Medisys
  • 26
    • 85071259582 scopus 로고    scopus 로고
    • About GPHIN Accessed July
    • Government of Canada. About GPHIN. https://gphin. canada.ca/cepr/aboutgphin-rmispenbref.jsp?language=en-CA. Accessed July 9, 2019.
    • (2019) Government of Canada , vol.9
  • 28
    • 85016029141 scopus 로고    scopus 로고
    • A simple approach to measure transmissibility and forecast incidence
    • Nouvellet P, Cori A, Garske T, et al. A simple approach to measure transmissibility and forecast incidence. Epidemics 2018;22:29-35.
    • (2018) Epidemics , Issue.22 , pp. 29-35
    • Nouvellet, P.1    Cori, A.2    Garske, T.3
  • 30
    • 85063503731 scopus 로고    scopus 로고
    • Utilizing general human movement models to predict the spread of emerging infectious diseases in resource poor settings
    • Kraemer MUG, Golding N, Bisanzio D, et al. Utilizing general human movement models to predict the spread of emerging infectious diseases in resource poor settings. Sci Rep 2019;91:5151.
    • (2019) Sci Rep , vol.9 , Issue.1 , pp. 5151
    • Mug, K.1    Golding, N.2    Bisanzio, D.3
  • 31
    • 84923285575 scopus 로고    scopus 로고
    • Commentary: Containing the Ebola outbreak-The potential and challenge of mobile network data
    • Wesolowski A, Buckee CO, Bengtsson L, Wetter E, Lu X, Tatem AJ. Commentary: containing the Ebola outbreak-The potential and challenge of mobile network data. PLoS Curr 2014;6.
    • (2014) PLoS Curr , pp. 6
    • Wesolowski, A.1    Buckee, C.O.2    Bengtsson, L.3    Wetter, E.4    Lu, X.5    Tatem, A.J.6
  • 32
    • 84937064804 scopus 로고    scopus 로고
    • The global distribution of the arbovirus vectors
    • Kraemer MUG et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 2015;4: e08347.
    • (2015) Aedes Aegypti and Ae. Albopictus. ELife , vol.4 , pp. 08347
    • Mug, K.1
  • 34
    • 85027529293 scopus 로고    scopus 로고
    • Global yellow fever vaccination coverage from 1970 to 2016: An adjusted retrospective analysis
    • Shearer FM, Moyes CL, Pigott DM, et al. Global yellow fever vaccination coverage from 1970 to 2016: An adjusted retrospective analysis. Lancet Infect Dis 2017;1711:1209-1217.
    • (2017) Lancet Infect Dis , vol.17 , Issue.11 , pp. 1209-1217
    • Shearer, F.M.1    Moyes, C.L.2    Pigott, D.M.3
  • 36
    • 85014125352 scopus 로고    scopus 로고
    • Global distribution and environmental suitability for chikungunya virus
    • 1952 to 2015
    • Nsoesie EO, Kraemer MU, Golding N, et al. Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. Euro Surveill 2016;2120.
    • (2016) Euro Surveill , Issue.21 , pp. 20
    • Nsoesie, E.O.1    Kraemer, M.U.2    Golding, N.3
  • 37
    • 84969756961 scopus 로고    scopus 로고
    • Mapping global environmental suitability for Zika virus
    • Apr
    • Messina JP, Kraemer MU, Brady OJ, et al. Mapping global environmental suitability for Zika virus. Elife 2016 Apr 19;5.
    • (2016) Elife , vol.19 , pp. 5
    • Messina, J.P.1    Kraemer, M.U.2    Brady, O.J.3
  • 38
    • 85041469604 scopus 로고    scopus 로고
    • Existing and potential risk infection zones of yellow fever worldwide: A modelling analysis
    • Shearer FM, Longbottom J, Browne AJ, et al. Existing and potential risk infection zones of yellow fever worldwide: A modelling analysis. Lancet Glob Health 2018;63:e270-e278.
    • (2018) Lancet Glob Health , vol.6 , Issue.3 , pp. 270-278
    • Shearer, F.M.1    Longbottom, J.2    Browne, A.J.3
  • 39
    • 84866563012 scopus 로고    scopus 로고
    • Drivers, dynamics, and control of emerging vector-borne zoonotic diseases
    • Kilpatrick AM, Randolph SE. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 2012; 3809857:1946-1955.
    • (2012) Lancet , vol.380 , Issue.9857 , pp. 1946-1955
    • Kilpatrick, A.M.1    Randolph, S.E.2
  • 40
    • 85071230358 scopus 로고    scopus 로고
    • Accessed July
    • R Epidemics Consortium. RECON. https://www. repidemicsconsortium.org/. Accessed July 9, 2019.
    • (2019) RECON , vol.9
    • Epidemics, R.1
  • 43
    • 85009274885 scopus 로고    scopus 로고
    • Real-Time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model
    • Funk S, Camacho A, Kucharski AJ, Eggo RM, Edmunds WJ. Real-Time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model. Epidemics 2018; 22:56-61.
    • (2018) Epidemics , Issue.22 , pp. 56-61
    • Funk, S.1    Camacho, A.2    Kucharski, A.J.3    Eggo, R.M.4    Edmunds, W.J.5
  • 44
    • 85032635968 scopus 로고    scopus 로고
    • Developing a dengue forecast model using machine learning: A case study in China
    • Guo P, Liu T, Zhang Q, et al. Developing a dengue forecast model using machine learning: A case study in China. PLoS Negl Trop Dis 2017;1110:e0005973.
    • (2017) PLoS Negl Trop Dis , vol.11 , Issue.10 , pp. 0005973
    • Guo, P.1    Liu, T.2    Zhang, Q.3
  • 45
    • 85017531304 scopus 로고    scopus 로고
    • Ecdc round table report and promed-mail most useful international information sources for the netherlands early warning committee
    • Bijkerk P, Monnier AA, Fanoy EB, Kardamanidis K, Friesema IH, Knol MJ. ECDC Round Table Report and ProMed-mail most useful international information sources for the Netherlands Early Warning Committee. Euro Surveill 2017;2214:30502.
    • (2017) Euro Surveill , vol.22 , Issue.14 , pp. 30502
    • Bijkerk, P.1    Monnier, A.A.2    Fanoy, E.B.3    Kardamanidis, K.4    Friesema, I.H.5    Knol, M.J.6
  • 46
    • 85071228369 scopus 로고    scopus 로고
    • Global Outbreak Alert and Response Network Accessed July
    • World Health Organization. Global Outbreak Alert and Response Network. https://www.who.int/ihr/alert-and-response/outbreak-network/en/. Accessed July 9, 2019.
    • (2019) World Health Organization , vol.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.