메뉴 건너뛰기




Volumn 4, Issue 1, 2019, Pages

Using twitter for public health surveillance from monitoring and prediction to public response

Author keywords

Classification; Data mining; Ebola; Public health; Twitter; Zika

Indexed keywords

DATA MINING; MONITORING; PUBLIC HEALTH; SOCIAL NETWORKING (ONLINE);

EID: 85070935220     PISSN: None     EISSN: 23065729     Source Type: Journal    
DOI: 10.3390/data4010006     Document Type: Review
Times cited : (114)

References (47)
  • 1
    • 0003552927 scopus 로고    scopus 로고
    • Epidemiology for public health practice
    • Friss, R.H.; Sellers, T.A. Epidemiology for public health practice. Epidemiology 1999, 20, 25.
    • (1999) Epidemiology , vol.20 , pp. 25
    • Friss, R.H.1    Sellers, T.A.2
  • 2
    • 84866896931 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention, Public health surveillance in the United States: Evolution and challenges
    • Thacker, S.B.; Qualters, J.R.; Lee, L.M. Centers for Disease Control and Prevention, Public health surveillance in the United States: Evolution and challenges. MMWR Surveill. Summ. 2012, 61, 3–9.
    • (2012) MMWR Surveill. Summ. , vol.61 , pp. 3-9
    • Thacker, S.B.1    Qualters, J.R.2    Lee, L.M.3
  • 3
    • 66249102261 scopus 로고    scopus 로고
    • Digital disease detection—Harnessing the Web for public health surveillance
    • Brownstein, J.S.; Freifeld, C.C.; Madoff, L.C. Digital disease detection—Harnessing the Web for public health surveillance. N. Engl. J. Med. 2009, 360, 2153–2157. [CrossRef]
    • (2009) N. Engl. J. Med. , vol.360 , pp. 2153-2157
    • Brownstein, J.S.1    Freifeld, C.C.2    Madoff, L.C.3
  • 4
    • 85032291595 scopus 로고    scopus 로고
    • What We Are Watching—Top Global Infectious Disease Threats, 2013–2016: An Update from CDC’s Global Disease Detection Operations Center
    • Christian, K.A.; Iuliano, A.D.; Uyeki, T.M.; Mintz, E.D.; Nichol, S.T.; Rollin, P.; Staples, J.E.; Arthur, R.R. What We Are Watching—Top Global Infectious Disease Threats, 2013–2016: An Update from CDC’s Global Disease Detection Operations Center. Health Secur. 2017, 15, 453–462. [CrossRef] [PubMed]
    • (2017) Health Secur , vol.15 , pp. 453-462
    • Christian, K.A.1    Iuliano, A.D.2    Uyeki, T.M.3    Mintz, E.D.4    Nichol, S.T.5    Rollin, P.6    Staples, J.E.7    Arthur, R.R.8
  • 8
    • 85044041308 scopus 로고    scopus 로고
    • Scaling up Research on Drug Abuse and Addiction Through Social Media Big Data
    • Kim, S.J.; Marsch, L.A.; Hancock, J.T.; Das, A.K. Scaling up Research on Drug Abuse and Addiction Through Social Media Big Data. J. Med. Int. Res. 2017, 19, 353. [CrossRef]
    • (2017) J. Med. Int. Res. , vol.19 , pp. 353
    • Kim, S.J.1    Marsch, L.A.2    Hancock, J.T.3    Das, A.K.4
  • 10
    • 85070854776 scopus 로고    scopus 로고
    • Available online, accessed on 28 November
    • Google. Available online: https://scholar.google.com/(accessed on 28 November 2018).
    • (2018) Google
  • 11
    • 85070874959 scopus 로고    scopus 로고
    • Available online, accessed on 28 November 2018
    • IEEE. Available online: http://ieeexplore.ieee.org/Xplore/home.jsp (accessed on 28 November 2018).
  • 12
    • 85070882615 scopus 로고    scopus 로고
    • accessed on 28 November 2018
    • Direct, S. Available online: http://www.sciencedirect.com/(accessed on 28 November 2018).
    • Direct, S.1
  • 13
    • 84893320514 scopus 로고    scopus 로고
    • A model for mining public health topics from Twitter
    • Paul, M.J.; Dredze, M. A model for mining public health topics from Twitter. Health 2012, 11, 16.
    • (2012) Health , vol.11 , pp. 16
    • Paul, M.J.1    Dredze, M.2
  • 15
    • 84891813761 scopus 로고    scopus 로고
    • Influenza-like illness surveillance on Twitter through automated learning of naïve language
    • Gesualdo, F.; Stilo, G.; Gonfiantini, M.V.; Pandolfi, E.; Velardi, P.; Tozzi, A.E. Influenza-like illness surveillance on Twitter through automated learning of naïve language. PLoS ONE 2013, 8, e82489. [CrossRef]
    • (2013) Plos ONE , vol.8
    • Gesualdo, F.1    Stilo, G.2    Gonfiantini, M.V.3    Pandolfi, E.4    Velardi, P.5    Tozzi, A.E.6
  • 18
    • 84954311262 scopus 로고    scopus 로고
    • Identifying adverse effects of HIV drug treatment and associated sentiments using twitter
    • Adrover, C.; Bodnar, T.; Huang, Z.; Telenti, A.; Salathé, M. Identifying adverse effects of HIV drug treatment and associated sentiments using twitter. JMIR Public Health Surveill. 2015, 1, 7. [CrossRef] [PubMed]
    • (2015) JMIR Public Health Surveill , vol.1 , pp. 7
    • Adrover, C.1    Bodnar, T.2    Huang, Z.3    Telenti, A.4    Salathé, M.5
  • 20
    • 84924285421 scopus 로고    scopus 로고
    • Portable automatic text classification for adverse drug reaction detection via multi-corpus training
    • Sarker, A.; Gonzalez, G. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J. Biomed. Inform. 2015, 53, 196–207. [CrossRef] [PubMed]
    • (2015) J. Biomed. Inform. , vol.53 , pp. 196-207
    • Sarker, A.1    Gonzalez, G.2
  • 21
    • 85070883849 scopus 로고    scopus 로고
    • Analysis of Public Health Concerns using Two-step Sentiment Classification
    • Behera, P.N.; Eluri, S. Analysis of Public Health Concerns using Two-step Sentiment Classification. Int. J. Eng. Res. Technol. 2015, 4, 606–610.
    • (2015) Int. J. Eng. Res. Technol. , vol.4 , pp. 606-610
    • Behera, P.N.1    Eluri, S.2
  • 22
    • 79955757514 scopus 로고    scopus 로고
    • The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic
    • Signorini, A.; Segre, A.M.; Polgreen, P.M. The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic. PLoS ONE 2011, 6, e19467. [CrossRef] [PubMed]
    • (2011) Plos ONE , vol.6
    • Signorini, A.1    Segre, A.M.2    Polgreen, P.M.3
  • 23
    • 84883360748 scopus 로고    scopus 로고
    • Using twitter to examine smoking behavior and perceptions of emerging tobacco products
    • Myslín, M.; Zhu, S.-H.; Chapman, W.; Conway, M. Using twitter to examine smoking behavior and perceptions of emerging tobacco products. J. Med. Int. Res. 2013, 15, 174. [CrossRef] [PubMed]
    • (2013) J. Med. Int. Res. , vol.15 , pp. 174
    • Myslín, M.1    Zhu, S.-H.2    Chapman, W.3    Conway, M.4
  • 24
    • 84947296805 scopus 로고    scopus 로고
    • Twitter sentiment classification for measuring public health concerns
    • Ji, X.S.; Chun, A.; Wei, Z.; Geller, J. Twitter sentiment classification for measuring public health concerns. Soc. Netw. Anal. Min. 2015, 5, 13. [CrossRef]
    • (2015) Soc. Netw. Anal. Min. , vol.5 , pp. 13
    • Ji, X.S.1    Chun, A.2    Wei, Z.3    Geller, J.4
  • 26
    • 79953762206 scopus 로고    scopus 로고
    • Twitter Sentiment Classification Using Distant Supervision
    • (accessed on 28 December 2018)
    • Go, A.; Bhayani, R.; Huang, L. Twitter Sentiment Classification Using Distant Supervision. CS224N Project Report Stanford. 2009, Volume 1. Available online: https://bit.ly/2Aj2rXi (accessed on 28 December 2018).
    • (2009) CS224N Project Report Stanford , vol.1
    • Go, A.1    Bhayani, R.2    Huang, L.3
  • 28
    • 84931022706 scopus 로고    scopus 로고
    • What can we learn about the Ebola outbreak from tweets?
    • Odlum, M.; Yoon, S. What can we learn about the Ebola outbreak from tweets? Am. J. Infect. Control 2015, 43, 563–571. [CrossRef]
    • (2015) Am. J. Infect. Control , vol.43 , pp. 563-571
    • Odlum, M.1    Yoon, S.2
  • 32
    • 84900339672 scopus 로고    scopus 로고
    • Analysing Twitter and web queries for flu trend prediction
    • Santos, J.C.; Matos, S. Analysing Twitter and web queries for flu trend prediction. Theor. Biol. Med. Model. 2014, 11, S6. [CrossRef]
    • (2014) Theor. Biol. Med. Model. , vol.11 , pp. S6
    • Santos, J.C.1    Matos, S.2
  • 36
    • 85123586840 scopus 로고    scopus 로고
    • Investigating public health surveillance using Twitter
    • Yepes, A.J.; MacKinlay, A.; Han, B. Investigating public health surveillance using Twitter. ACL-IJCNLP 2015, 2015, 164.
    • (2015) ACL-IJCNLP , vol.2015 , pp. 164
    • Yepes, A.J.1    Mackinlay, A.2    Han, B.3
  • 38
    • 84902539789 scopus 로고    scopus 로고
    • An ensemble heterogeneous classification methodology for discovering health-related knowledge in social media messages
    • Tuarob, S.; Tucker, C.S.; Salathe, M.; Ram, N. An ensemble heterogeneous classification methodology for discovering health-related knowledge in social media messages. J. Biomed. Inform. 2014, 49, 255–268. [CrossRef] [PubMed]
    • (2014) J. Biomed. Inform. , vol.49 , pp. 255-268
    • Tuarob, S.1    Tucker, C.S.2    Salathe, M.3    Ram, N.4
  • 43
    • 85017346814 scopus 로고    scopus 로고
    • Computer-Assisted Keyword and Document Set Discovery from Unstructured Text
    • King, G.; Lam, P.; Roberts, M.E. Computer-Assisted Keyword and Document Set Discovery from Unstructured Text. Am. J. Political Sci. 2017, 61, 971–988. [CrossRef]
    • (2017) Am. J. Political Sci. , vol.61 , pp. 971-988
    • King, G.1    Lam, P.2    Roberts, M.E.3
  • 44
    • 85025114231 scopus 로고    scopus 로고
    • Privacy protection and self-disclosure across societies: A study of global Twitter users
    • Liang, H.; Shen, F.; Fu, K.-W. Privacy protection and self-disclosure across societies: A study of global Twitter users. New Media Soc. 2017, 19, 1476–1497. [CrossRef]
    • (2017) New Media Soc , vol.19 , pp. 1476-1497
    • Liang, H.1    Shen, F.2    Fu, K.-W.3
  • 45
    • 84942627354 scopus 로고    scopus 로고
    • Testing propositions derived from Twitter studies: Generalization and replication in computational social science
    • Liang, H.; Fu, K.-W. Testing propositions derived from Twitter studies: Generalization and replication in computational social science. PLoS ONE 2015, 10, e0134270. [CrossRef] [PubMed]
    • (2015) Plos ONE , vol.10
    • Liang, H.1    Fu, K.-W.2
  • 46
    • 85029503521 scopus 로고    scopus 로고
    • Twitter and Middle East respiratory syndrome, South Korea, 2015: A multi-lingual study
    • Fung, I.C.H.; Zeng, J.; Chan, C.H.; Liang, H.; Yin, J.; Liu, Z.; Fu, K.W. Twitter and Middle East respiratory syndrome, South Korea, 2015: A multi-lingual study. Infect. Dis. Health 2018, 23, 10–16. [CrossRef]
    • (2018) Infect. Dis. Health , vol.23 , pp. 10-16
    • Fung, I.C.H.1    Zeng, J.2    Chan, C.H.3    Liang, H.4    Yin, J.5    Liu, Z.6    Fu, K.W.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.