-
1
-
-
0003552927
-
Epidemiology for public health practice
-
Friss, R.H.; Sellers, T.A. Epidemiology for public health practice. Epidemiology 1999, 20, 25.
-
(1999)
Epidemiology
, vol.20
, pp. 25
-
-
Friss, R.H.1
Sellers, T.A.2
-
2
-
-
84866896931
-
Centers for Disease Control and Prevention, Public health surveillance in the United States: Evolution and challenges
-
Thacker, S.B.; Qualters, J.R.; Lee, L.M. Centers for Disease Control and Prevention, Public health surveillance in the United States: Evolution and challenges. MMWR Surveill. Summ. 2012, 61, 3–9.
-
(2012)
MMWR Surveill. Summ.
, vol.61
, pp. 3-9
-
-
Thacker, S.B.1
Qualters, J.R.2
Lee, L.M.3
-
3
-
-
66249102261
-
Digital disease detection—Harnessing the Web for public health surveillance
-
Brownstein, J.S.; Freifeld, C.C.; Madoff, L.C. Digital disease detection—Harnessing the Web for public health surveillance. N. Engl. J. Med. 2009, 360, 2153–2157. [CrossRef]
-
(2009)
N. Engl. J. Med.
, vol.360
, pp. 2153-2157
-
-
Brownstein, J.S.1
Freifeld, C.C.2
Madoff, L.C.3
-
4
-
-
85032291595
-
What We Are Watching—Top Global Infectious Disease Threats, 2013–2016: An Update from CDC’s Global Disease Detection Operations Center
-
Christian, K.A.; Iuliano, A.D.; Uyeki, T.M.; Mintz, E.D.; Nichol, S.T.; Rollin, P.; Staples, J.E.; Arthur, R.R. What We Are Watching—Top Global Infectious Disease Threats, 2013–2016: An Update from CDC’s Global Disease Detection Operations Center. Health Secur. 2017, 15, 453–462. [CrossRef] [PubMed]
-
(2017)
Health Secur
, vol.15
, pp. 453-462
-
-
Christian, K.A.1
Iuliano, A.D.2
Uyeki, T.M.3
Mintz, E.D.4
Nichol, S.T.5
Rollin, P.6
Staples, J.E.7
Arthur, R.R.8
-
5
-
-
84979000412
-
Results from the centers for disease control and prevention’s predict the 2013–2014 Influenza Season Challenge
-
Biggerstaff, M.; Alper, D.; Dredze, M.; Fox, S.; Fung, I.C.H.; Hickmann, K.S.; Lewis, B.; Rosenfeld, R.; Shaman, J.; Tsou, M.-H. Results from the centers for disease control and prevention’s predict the 2013–2014 Influenza Season Challenge. BMC Infect. Dis. 2016, 16, 357. [CrossRef] [PubMed]
-
(2016)
BMC Infect. Dis.
, vol.16
, pp. 357
-
-
Biggerstaff, M.1
Alper, D.2
Dredze, M.3
Fox, S.4
Fung, I.C.H.5
Hickmann, K.S.6
Lewis, B.7
Rosenfeld, R.8
Shaman, J.9
Tsou, M.-H.10
-
6
-
-
85052225937
-
Promising advances in surveillance technology for global health security
-
CRC Press: Boca Raton, FL, USA
-
Lewis, S.H.; Burkom, H.S.; Babin, S.; Blazes, D.L. Promising advances in surveillance technology for global health security. In Disease Surveillance: Technological Contributions to Global Health Security; CRC Press: Boca Raton, FL, USA, 2016; p. 179.
-
(2016)
Disease Surveillance: Technological Contributions to Global Health Security
, pp. 179
-
-
Lewis, S.H.1
Burkom, H.S.2
Babin, S.3
Blazes, D.L.4
-
7
-
-
84914666491
-
Use of social media across US hospitals: Descriptive analysis of adoption and utilization
-
Griffis, H.M.; Kilaru, A.S.; Werner, R.M.; Asch, D.A.; Hershey, J.C.; Hill, S.; Ha, Y.P.; Sellers, A.; Mahoney, K.; Merchant, R.M. Use of social media across US hospitals: Descriptive analysis of adoption and utilization. J. Med. Int. Res. 2014, 16, 264. [CrossRef] [PubMed]
-
(2014)
J. Med. Int. Res.
, vol.16
, pp. 264
-
-
Griffis, H.M.1
Kilaru, A.S.2
Werner, R.M.3
Asch, D.A.4
Hershey, J.C.5
Hill, S.6
Ha, Y.P.7
Sellers, A.8
Mahoney, K.9
Merchant, R.M.10
-
8
-
-
85044041308
-
Scaling up Research on Drug Abuse and Addiction Through Social Media Big Data
-
Kim, S.J.; Marsch, L.A.; Hancock, J.T.; Das, A.K. Scaling up Research on Drug Abuse and Addiction Through Social Media Big Data. J. Med. Int. Res. 2017, 19, 353. [CrossRef]
-
(2017)
J. Med. Int. Res.
, vol.19
, pp. 353
-
-
Kim, S.J.1
Marsch, L.A.2
Hancock, J.T.3
Das, A.K.4
-
9
-
-
85032799160
-
Evaluating the Social Media Performance of Hospitals in Spain: A Longitudinal and Comparative Study
-
Martinez-Millana, A.; Fernandez-Llatas, C.; Bilbao, I.B.; Salcedo, M.T.; Salcedo, V.T. Evaluating the Social Media Performance of Hospitals in Spain: A Longitudinal and Comparative Study. J. Med. Int. Res. 2017, 19, 181. [CrossRef]
-
(2017)
J. Med. Int. Res.
, vol.19
, pp. 181
-
-
Martinez-Millana, A.1
Fernandez-Llatas, C.2
Bilbao, I.B.3
Salcedo, M.T.4
Salcedo, V.T.5
-
10
-
-
85070854776
-
-
Available online, accessed on 28 November
-
Google. Available online: https://scholar.google.com/(accessed on 28 November 2018).
-
(2018)
Google
-
-
-
11
-
-
85070874959
-
-
Available online, accessed on 28 November 2018
-
IEEE. Available online: http://ieeexplore.ieee.org/Xplore/home.jsp (accessed on 28 November 2018).
-
-
-
-
12
-
-
85070882615
-
-
accessed on 28 November 2018
-
Direct, S. Available online: http://www.sciencedirect.com/(accessed on 28 November 2018).
-
-
-
Direct, S.1
-
13
-
-
84893320514
-
A model for mining public health topics from Twitter
-
Paul, M.J.; Dredze, M. A model for mining public health topics from Twitter. Health 2012, 11, 16.
-
(2012)
Health
, vol.11
, pp. 16
-
-
Paul, M.J.1
Dredze, M.2
-
14
-
-
79952396639
-
Identifying health-related topics on twitter
-
College Park, MD, USA, 30–31 March 2011
-
Prier, K.W.; Smith, M.S.; Giraud-Carrier, C.; Hanson, C.L. Identifying health-related topics on twitter. In Proceedings of the International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, College Park, MD, USA, 30–31 March 2011; pp. 18–25.
-
Proceedings of the International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction
, pp. 18-25
-
-
Prier, K.W.1
Smith, M.S.2
Giraud-Carrier, C.3
Hanson, C.L.4
-
15
-
-
84891813761
-
Influenza-like illness surveillance on Twitter through automated learning of naïve language
-
Gesualdo, F.; Stilo, G.; Gonfiantini, M.V.; Pandolfi, E.; Velardi, P.; Tozzi, A.E. Influenza-like illness surveillance on Twitter through automated learning of naïve language. PLoS ONE 2013, 8, e82489. [CrossRef]
-
(2013)
Plos ONE
, vol.8
-
-
Gesualdo, F.1
Stilo, G.2
Gonfiantini, M.V.3
Pandolfi, E.4
Velardi, P.5
Tozzi, A.E.6
-
16
-
-
85147198508
-
Quantifying mental health signals in twitter
-
Baltimore, MA, USA, 27 June
-
Coppersmith, G.; Dredze, M.; Harman, C. Quantifying mental health signals in twitter. In Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, Baltimore, MA, USA, 27 June 2014; pp. 51–60.
-
(2014)
Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality
, pp. 51-60
-
-
Coppersmith, G.1
Dredze, M.2
Harman, C.3
-
17
-
-
84881244211
-
How to exploit twitter for public health monitoring
-
Denecke, K.; Krieck, M.; Otrusina, L.; Smrz, P.; Dolog, P.; Nejdl, W.; Velasco, E. How to exploit twitter for public health monitoring. Methods Inf. Med. 2013, 52, 326–339. [PubMed]
-
(2013)
Methods Inf. Med.
, vol.52
, pp. 326-339
-
-
Denecke, K.1
Krieck, M.2
Otrusina, L.3
Smrz, P.4
Dolog, P.5
Nejdl, W.6
Velasco, E.7
-
18
-
-
84954311262
-
Identifying adverse effects of HIV drug treatment and associated sentiments using twitter
-
Adrover, C.; Bodnar, T.; Huang, Z.; Telenti, A.; Salathé, M. Identifying adverse effects of HIV drug treatment and associated sentiments using twitter. JMIR Public Health Surveill. 2015, 1, 7. [CrossRef] [PubMed]
-
(2015)
JMIR Public Health Surveill
, vol.1
, pp. 7
-
-
Adrover, C.1
Bodnar, T.2
Huang, Z.3
Telenti, A.4
Salathé, M.5
-
19
-
-
84924318819
-
Mining Twitter for adverse drug reaction mentions: A corpus and classification benchmark
-
Reykjavík, Iceland, 31 May
-
Ginn, R.; Pimpalkhute, P.; Nikfarjam, A.; Patki, A.; O’Connor, K.; Sarker, A.; Gonzalez, G. Mining Twitter for adverse drug reaction mentions: A corpus and classification benchmark. In Proceedings of the Fourth Workshop on Building and Evaluating Resources for Health and Biomedical Text Processing, Reykjavík, Iceland, 31 May 2014.
-
(2014)
Proceedings of the Fourth Workshop on Building and Evaluating Resources for Health and Biomedical Text Processing
-
-
Ginn, R.1
Pimpalkhute, P.2
Nikfarjam, A.3
Patki, A.4
O’Connor, K.5
Sarker, A.6
Gonzalez, G.7
-
20
-
-
84924285421
-
Portable automatic text classification for adverse drug reaction detection via multi-corpus training
-
Sarker, A.; Gonzalez, G. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J. Biomed. Inform. 2015, 53, 196–207. [CrossRef] [PubMed]
-
(2015)
J. Biomed. Inform.
, vol.53
, pp. 196-207
-
-
Sarker, A.1
Gonzalez, G.2
-
21
-
-
85070883849
-
Analysis of Public Health Concerns using Two-step Sentiment Classification
-
Behera, P.N.; Eluri, S. Analysis of Public Health Concerns using Two-step Sentiment Classification. Int. J. Eng. Res. Technol. 2015, 4, 606–610.
-
(2015)
Int. J. Eng. Res. Technol.
, vol.4
, pp. 606-610
-
-
Behera, P.N.1
Eluri, S.2
-
22
-
-
79955757514
-
The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic
-
Signorini, A.; Segre, A.M.; Polgreen, P.M. The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic. PLoS ONE 2011, 6, e19467. [CrossRef] [PubMed]
-
(2011)
Plos ONE
, vol.6
-
-
Signorini, A.1
Segre, A.M.2
Polgreen, P.M.3
-
23
-
-
84883360748
-
Using twitter to examine smoking behavior and perceptions of emerging tobacco products
-
Myslín, M.; Zhu, S.-H.; Chapman, W.; Conway, M. Using twitter to examine smoking behavior and perceptions of emerging tobacco products. J. Med. Int. Res. 2013, 15, 174. [CrossRef] [PubMed]
-
(2013)
J. Med. Int. Res.
, vol.15
, pp. 174
-
-
Myslín, M.1
Zhu, S.-H.2
Chapman, W.3
Conway, M.4
-
24
-
-
84947296805
-
Twitter sentiment classification for measuring public health concerns
-
Ji, X.S.; Chun, A.; Wei, Z.; Geller, J. Twitter sentiment classification for measuring public health concerns. Soc. Netw. Anal. Min. 2015, 5, 13. [CrossRef]
-
(2015)
Soc. Netw. Anal. Min.
, vol.5
, pp. 13
-
-
Ji, X.S.1
Chun, A.2
Wei, Z.3
Geller, J.4
-
25
-
-
84922572824
-
Combining classification and clustering for tweet sentiment analysis
-
Sao Paulo, Brazil, 18–22 October 2014
-
Coletta, L.F.S.; da Silva, N.F.F.; Hruschka, E.R.; Hruschka, E.R. Combining classification and clustering for tweet sentiment analysis. In Proceedings of the 2014 Brazilian Conference on Intelligent Systems (BRACIS), Sao Paulo, Brazil, 18–22 October 2014; pp. 210–215.
-
Proceedings of the 2014 Brazilian Conference on Intelligent Systems (BRACIS)
, pp. 210-215
-
-
Coletta, L.F.S.1
da Silva, N.F.F.2
Hruschka, E.R.3
Hruschka, E.R.4
-
26
-
-
79953762206
-
Twitter Sentiment Classification Using Distant Supervision
-
(accessed on 28 December 2018)
-
Go, A.; Bhayani, R.; Huang, L. Twitter Sentiment Classification Using Distant Supervision. CS224N Project Report Stanford. 2009, Volume 1. Available online: https://bit.ly/2Aj2rXi (accessed on 28 December 2018).
-
(2009)
CS224N Project Report Stanford
, vol.1
-
-
Go, A.1
Bhayani, R.2
Huang, L.3
-
27
-
-
84855837557
-
Social Media Data Mining: A Social Network Analysis of Tweets during the 2010–2011 Australian Floods
-
Brisbane, Australia, 7–11 July
-
Cheong, F.; Cheong, C. Social Media Data Mining: A Social Network Analysis of Tweets during the 2010–2011 Australian Floods. In Proceedings of the 2011–15th Pacific Asia Conference on Information Systems: Quality Research in Pacific, Brisbane, Australia, 7–11 July 2011; p. 46.
-
(2011)
Proceedings of the 2011–15th Pacific Asia Conference on Information Systems: Quality Research in Pacific
, pp. 46
-
-
Cheong, F.1
Cheong, C.2
-
28
-
-
84931022706
-
What can we learn about the Ebola outbreak from tweets?
-
Odlum, M.; Yoon, S. What can we learn about the Ebola outbreak from tweets? Am. J. Infect. Control 2015, 43, 563–571. [CrossRef]
-
(2015)
Am. J. Infect. Control
, vol.43
, pp. 563-571
-
-
Odlum, M.1
Yoon, S.2
-
29
-
-
84992709825
-
Tracking dengue epidemics using twitter content classification and topic modelling
-
Lugano, Switzerland, 6–9 June 2016
-
Missier, P.; Romanovsky, A.; Miu, T.; Pal, A.; Daniilakis, M.; Garcia, A.; da Silva Sousa, L. Tracking dengue epidemics using twitter content classification and topic modelling. In Proceedings of the 16th International Conference on Web Engineering, Lugano, Switzerland, 6–9 June 2016; pp. 80–92.
-
Proceedings of the 16Th International Conference on Web Engineering
, pp. 80-92
-
-
Missier, P.1
Romanovsky, A.2
Miu, T.3
Pal, A.4
Daniilakis, M.5
Garcia, A.6
da Silva Sousa, L.7
-
30
-
-
84957857879
-
Evaluating multi-label classification of incident-related tweets
-
Seoul, Korea7–11 April
-
Schulz, A.; Mencía, E.L.; Dang, T.T.; Schmidt, B. Evaluating multi-label classification of incident-related tweets. In Proceedings of the Making Sense of Microposts (# Microposts 2014), Seoul, Korea, 7–11 April 2014; p. 7.
-
(2014)
Proceedings of the Making Sense of Microposts (# Microposts 2014)
, pp. 7
-
-
Schulz, A.1
Mencía, E.L.2
Dang, T.T.3
Schmidt, B.4
-
31
-
-
84893233396
-
Dengue surveillance based on a computational model of spatio-temporal locality of Twitter
-
Koblenz, Germany, 15–17 June
-
Gomide, J.; Veloso, A.; Meira, W., Jr.; Almeida, V.; Benevenuto, F.; Ferraz, F.; Teixeira, M. Dengue surveillance based on a computational model of spatio-temporal locality of Twitter. In Proceedings of the 3rd International Web Science Conference, Koblenz, Germany, 15–17 June 2011; p. 3.
-
(2011)
Proceedings of the 3Rd International Web Science Conference
, pp. 3
-
-
Gomide, J.1
Veloso, A.2
Meira, W.3
Almeida, V.4
Benevenuto, F.5
Ferraz, F.6
Teixeira, M.7
-
32
-
-
84900339672
-
Analysing Twitter and web queries for flu trend prediction
-
Santos, J.C.; Matos, S. Analysing Twitter and web queries for flu trend prediction. Theor. Biol. Med. Model. 2014, 11, S6. [CrossRef]
-
(2014)
Theor. Biol. Med. Model.
, vol.11
, pp. S6
-
-
Santos, J.C.1
Matos, S.2
-
33
-
-
84874256077
-
Modeling the impact of lifestyle on health at scale
-
Rome, Italy, 4–8 February
-
Sadilek, A.; Kautz, H. Modeling the impact of lifestyle on health at scale. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, Rome, Italy, 4–8 February 2013; pp. 637–646.
-
(2013)
Proceedings of the Sixth ACM International Conference on Web Search and Data Mining
, pp. 637-646
-
-
Sadilek, A.1
Kautz, H.2
-
34
-
-
85064472811
-
A Machine Learning Approach to Twitter User Classification
-
Barcelona, Catalonia, Spain, 17–21 July 2011
-
Pennacchiotti, M.; Popescu, A.-M. A Machine Learning Approach to Twitter User Classification. In Proceedings of the Fifth International Conference on Weblogs and Social Media, Barcelona, Catalonia, Spain, 17–21 July 2011; pp. 281–288.
-
Proceedings of the Fifth International Conference on Weblogs and Social Media
, pp. 281-288
-
-
Pennacchiotti, M.1
Popescu, A.-M.2
-
35
-
-
84898859765
-
Carmen: A twitter geolocation system with applications to public health
-
Bellevue, DC, USA, 14–18 July
-
Dredze, M.; Paul, M.J.; Bergsma, S.; Tran, H. Carmen: A twitter geolocation system with applications to public health. In Proceedings of the AAAI Workshop on Expanding the Boundaries of Health Informatics Using AI (HIAI), Bellevue, DC, USA, 14–18 July 2013; pp. 20–24.
-
(2013)
Proceedings of the AAAI Workshop on Expanding the Boundaries of Health Informatics Using AI (HIAI)
, pp. 20-24
-
-
Dredze, M.1
Paul, M.J.2
Bergsma, S.3
Tran, H.4
-
36
-
-
85123586840
-
Investigating public health surveillance using Twitter
-
Yepes, A.J.; MacKinlay, A.; Han, B. Investigating public health surveillance using Twitter. ACL-IJCNLP 2015, 2015, 164.
-
(2015)
ACL-IJCNLP
, vol.2015
, pp. 164
-
-
Yepes, A.J.1
Mackinlay, A.2
Han, B.3
-
37
-
-
84900419026
-
Twitter: A good place to detect health conditions
-
Prieto, V.M.; Matos, S.; Alvarez, M.; Cacheda, F.; Oliveira, J.L. Twitter: A good place to detect health conditions. PLoS ONE 2014, 9, e86191. [CrossRef] [PubMed]
-
(2014)
Plos ONE
, vol.9
-
-
Prieto, V.M.1
Matos, S.2
Alvarez, M.3
Cacheda, F.4
Oliveira, J.L.5
-
38
-
-
84902539789
-
An ensemble heterogeneous classification methodology for discovering health-related knowledge in social media messages
-
Tuarob, S.; Tucker, C.S.; Salathe, M.; Ram, N. An ensemble heterogeneous classification methodology for discovering health-related knowledge in social media messages. J. Biomed. Inform. 2014, 49, 255–268. [CrossRef] [PubMed]
-
(2014)
J. Biomed. Inform.
, vol.49
, pp. 255-268
-
-
Tuarob, S.1
Tucker, C.S.2
Salathe, M.3
Ram, N.4
-
39
-
-
77956025040
-
Short text classification in twitter to improve information filtering
-
Geneva, Switzerland, 19–23 July 2010
-
Sriram, B.; Fuhry, D.; Demir, E.; Ferhatosmanoglu, H.; Demirbas, M. Short text classification in twitter to improve information filtering. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Geneva, Switzerland, 19–23 July 2010; pp. 841–842.
-
Proceedings of the 33Rd International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 841-842
-
-
Sriram, B.1
Fuhry, D.2
Demir, E.3
Ferhatosmanoglu, H.4
Demirbas, M.5
-
40
-
-
84863157333
-
Twitter trending topic classification
-
Vancouver, BC, Canada, December
-
Lee, K.; Palsetia, D.; Narayanan, R.; Patwary, M.M.A.; Agrawal, A.; Choudhary, A. Twitter trending topic classification. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops (ICDMW), Vancouver, BC, Canada, 11 December 2011; pp. 251–258.
-
Proceedings of the 2011 IEEE 11Th International Conference on Data Mining Workshops (ICDMW)
, pp. 251-258
-
-
Lee, K.1
Palsetia, D.2
Narayanan, R.3
Patwary, M.M.A.4
Agrawal, A.5
Choudhary, A.6
-
41
-
-
84893291115
-
A framework for detecting public health trends with twitter
-
Niagara, ON, Canada, 25–29 August 2013
-
Parker, J.; Wei, Y.; Yates, A.; Frieder, O.; Goharian, N. A framework for detecting public health trends with twitter. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Niagara, ON, Canada, 25–29 August 2013; pp. 556–563.
-
Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
, pp. 556-563
-
-
Parker, J.1
Wei, Y.2
Yates, A.3
Frieder, O.4
Goharian, N.5
-
42
-
-
84897705730
-
Assessing the bias in samples of large online networks
-
González-Bailón, S.; Wang, N.; Rivero, A.; Borge-Holthoefer, J.; Moreno, Y. Assessing the bias in samples of large online networks. Soc. Netw. 2014, 38, 16–27. [CrossRef]
-
(2014)
Soc. Netw.
, vol.38
, pp. 16-27
-
-
González-Bailón, S.1
Wang, N.2
Rivero, A.3
Borge-Holthoefer, J.4
Moreno, Y.5
-
43
-
-
85017346814
-
Computer-Assisted Keyword and Document Set Discovery from Unstructured Text
-
King, G.; Lam, P.; Roberts, M.E. Computer-Assisted Keyword and Document Set Discovery from Unstructured Text. Am. J. Political Sci. 2017, 61, 971–988. [CrossRef]
-
(2017)
Am. J. Political Sci.
, vol.61
, pp. 971-988
-
-
King, G.1
Lam, P.2
Roberts, M.E.3
-
44
-
-
85025114231
-
Privacy protection and self-disclosure across societies: A study of global Twitter users
-
Liang, H.; Shen, F.; Fu, K.-W. Privacy protection and self-disclosure across societies: A study of global Twitter users. New Media Soc. 2017, 19, 1476–1497. [CrossRef]
-
(2017)
New Media Soc
, vol.19
, pp. 1476-1497
-
-
Liang, H.1
Shen, F.2
Fu, K.-W.3
-
45
-
-
84942627354
-
Testing propositions derived from Twitter studies: Generalization and replication in computational social science
-
Liang, H.; Fu, K.-W. Testing propositions derived from Twitter studies: Generalization and replication in computational social science. PLoS ONE 2015, 10, e0134270. [CrossRef] [PubMed]
-
(2015)
Plos ONE
, vol.10
-
-
Liang, H.1
Fu, K.-W.2
-
46
-
-
85029503521
-
Twitter and Middle East respiratory syndrome, South Korea, 2015: A multi-lingual study
-
Fung, I.C.H.; Zeng, J.; Chan, C.H.; Liang, H.; Yin, J.; Liu, Z.; Fu, K.W. Twitter and Middle East respiratory syndrome, South Korea, 2015: A multi-lingual study. Infect. Dis. Health 2018, 23, 10–16. [CrossRef]
-
(2018)
Infect. Dis. Health
, vol.23
, pp. 10-16
-
-
Fung, I.C.H.1
Zeng, J.2
Chan, C.H.3
Liang, H.4
Yin, J.5
Liu, Z.6
Fu, K.W.7
-
47
-
-
85070930277
-
How Did Ebola Information Spread on Twitter?
-
Atlanta, GA, USA, 23–25 August 2016
-
Liang, H. How Did Ebola Information Spread on Twitter? In Proceedings of the National Conference on Health Communication, Marketing, and Media (NCHCMM), Atlanta, GA, USA, 23–25 August 2016.
-
Proceedings of the National Conference on Health Communication, Marketing, and Media (NCHCMM)
-
-
Liang, H.1
|