메뉴 건너뛰기




Volumn 5, Issue 1, 2015, Pages 1-25

Twitter sentiment classification for measuring public health concerns

Author keywords

Automatic sentiment labeling; Measure of concern; Public health; Sentiment analysis; Sentiment classification; Social analytics; Twitter mining

Indexed keywords

EPIDEMIOLOGY; HEALTH; LEARNING SYSTEMS; PUBLIC HEALTH; SOCIAL NETWORKING (ONLINE); STATISTICAL TESTS;

EID: 84947296805     PISSN: 18695450     EISSN: 18695469     Source Type: Journal    
DOI: 10.1007/s13278-015-0253-5     Document Type: Article
Times cited : (126)

References (75)
  • 4
    • 85041439429 scopus 로고    scopus 로고
    • Modelling Irony in Twitter. In: Proceedings of the Student Research Workshop at the 14th Conference of the European Chapter of the Association for Computational Linguistics
    • Barbieri F, Saggion H (2014) Modelling Irony in Twitter. In: Proceedings of the Student Research Workshop at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pp 56–64
    • (2014) pp 56–64
    • Barbieri, F.1    Saggion, H.2
  • 6
    • 79960473223 scopus 로고    scopus 로고
    • Arousal increases social transmission of information
    • Berger J (2011) Arousal increases social transmission of information. Psychol Sci 22(7):891–893
    • (2011) Psychol Sci , vol.22 , Issue.7 , pp. 891-893
    • Berger, J.1
  • 7
    • 78650162978 scopus 로고    scopus 로고
    • Sentiment knowledge discovery in twitter streaming data. In: Discovery Science, 2010. Springer
    • Bifet A, Frank E (2010) Sentiment knowledge discovery in twitter streaming data. In: Discovery Science, 2010. Springer, pp 1–15
    • (2010) pp 1–15
    • Bifet, A.1    Frank, E.2
  • 8
    • 48749089377 scopus 로고    scopus 로고
    • Surveillance Sans Frontieres: internet-based emerging infectious disease intelligence and the HealthMap project
    • Brownstein JS, Freifeld CC, Reis BY, Mandl KD (2008) Surveillance Sans Frontieres: internet-based emerging infectious disease intelligence and the HealthMap project. PLoS Med 5(7):e151
    • (2008) PLoS Med , vol.5 , Issue.7 , pp. e151
    • Brownstein, J.S.1    Freifeld, C.C.2    Reis, B.Y.3    Mandl, K.D.4
  • 9
    • 85116978522 scopus 로고    scopus 로고
    • Twitter data: What do they represent?
    • Bruns A, Stieglitz S (2014) Twitter data: What do they represent? It Inf Technol 56(5):240–245
    • (2014) It Inf Technol , vol.56 , Issue.5 , pp. 240-245
    • Bruns, A.1    Stieglitz, S.2
  • 10
    • 84961664901 scopus 로고    scopus 로고
    • Emotion classification of social media posts for estimating people’s reactions to communicated alert messages during crises
    • Brynielsson J, Johansson F, Jonsson C, Westling A (2014) Emotion classification of social media posts for estimating people’s reactions to communicated alert messages during crises. Security Inf 3(1):1–11
    • (2014) Security Inf , vol.3 , Issue.1 , pp. 1-11
    • Brynielsson, J.1    Johansson, F.2    Jonsson, C.3    Westling, A.4
  • 11
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27
    • (2011) ACM Trans Intell Syst Technol , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2
  • 12
    • 78649725192 scopus 로고    scopus 로고
    • Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak
    • Chew C, Eysenbach G (2010) Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PLoS One 5(11):e14118
    • (2010) PLoS One , vol.5 , Issue.11 , pp. e14118
    • Chew, C.1    Eysenbach, G.2
  • 14
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • Cortes C, Vapnik V (1995) Support-Vector Networks. Mach Learn 20(3):273–297
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 15
    • 85041434630 scopus 로고    scopus 로고
    • Detecting influenza outbreaks by analyzing Twitter messages
    • Culotta A (2010a) Detecting influenza outbreaks by analyzing Twitter messages. arXiv:10074748
    • (2010) arXiv:10074748
    • Culotta, A.1
  • 17
    • 84947269134 scopus 로고    scopus 로고
    • DCP (2014) Disease Control Priorities Project
    • DCP (2014) Disease Control Priorities Project. http://www.dcp-3.org/dcp2
  • 18
    • 84947228501 scopus 로고    scopus 로고
    • Discover (2014) Stem Cells Shed Light on Treatments for Bipolar Disorder
    • Discover (2014) Stem Cells Shed Light on Treatments for Bipolar Disorder. http://blogs.discovermagazine.com/d-brief/2014/03/26/stem-cells-shed-light-on-treatments-for-bipolar-disorder/-U-wKD4BdXN8
  • 19
    • 85041439533 scopus 로고    scopus 로고
    • Obscenity
    • FederalCommunicationsCommittee (2014) Obscenity, Indecency and Profanity Guide. http://www.fcc.gov/guides/obscenity-indecency-and-profanity
    • (2014) Indecency and Profanity Guide
  • 20
    • 3343019470 scopus 로고
    • Measuring nominal scale agreement among many raters
    • Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378
    • (1971) Psychol Bull , vol.76 , Issue.5 , pp. 378
    • Fleiss, J.L.1
  • 21
    • 85041435839 scopus 로고    scopus 로고
    • FoxNews (2014a) Company Recalls Several Food Products Due to Listeria
    • FoxNews (2014a) Company Recalls Several Food Products Due to Listeria. http://fox8.com/2014/03/23/several-nationally-distributed-food-products-recalled-due-to-listeria/
  • 22
    • 84947215023 scopus 로고    scopus 로고
    • Food Fear: Hummus
    • Giant Eagle: Trader Joe’s Recalled
    • FoxNews (2014b) Food Fear: Hummus, Dips from Target, Giant Eagle, Trader Joe’s Recalled. http://fox8.com/2014/05/20/food-fear-hummus-dips-from-target-giant-eagle-trader-joes-recalled/
    • (2014) Dips from Target
  • 23
    • 0032097263 scopus 로고
    • Introduction to statistical pattern recognition
    • Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn
    • (1990) 2nd edn
    • Fukunaga, K.1
  • 25
    • 79953762206 scopus 로고    scopus 로고
    • Twitter Sentiment Classification using Distant Supervision
    • Go A, Bhayani R, Huang L (2009) Twitter Sentiment Classification using Distant Supervision. Technical Report
    • (2009) Technical Report
    • Go, A.1    Bhayani, R.2    Huang, L.3
  • 26
    • 85041448196 scopus 로고    scopus 로고
    • Guardian (2011) Chinese panic-buy salt over Japan nuclear threat
    • Guardian (2011) Chinese panic-buy salt over Japan nuclear threat. http://www.guardian.co.uk/world/2011/mar/17/chinese-panic-buy-salt-japan
  • 28
    • 0030295948 scopus 로고    scopus 로고
    • Do people prefer to pass along good or bad news? Valence and relevance of news as predictors of transmission propensity
    • Heath C (1996) Do people prefer to pass along good or bad news? Valence and relevance of news as predictors of transmission propensity. Organ Behav Hum Decis Process 68(2):79–94
    • (1996) Organ Behav Hum Decis Process , vol.68 , Issue.2 , pp. 79-94
    • Heath, C.1
  • 29
    • 85041435190 scopus 로고    scopus 로고
    • Independent (2014) Malaysia Airlines flight MH17 crash
    • Independent (2014) Malaysia Airlines flight MH17 crash. http://www.independent.co.uk/news/world/europe/malaysia-airlines-plane-crash-boeing-jet-carrying-295-people-crashes-in-ukraine-9612882.html
  • 30
    • 85041449116 scopus 로고    scopus 로고
    • Ji X (2014a) Profanity Filter Word List
    • Ji X (2014a) Profanity Filter Word List. http://web.njit.edu/~xj25/eosds_beta/files/profanity_list.txt
  • 31
    • 84947217836 scopus 로고    scopus 로고
    • Ji X (2014b) Stopwords
    • Ji X (2014b) Stopwords. http://web.njit.edu/~xj25/eosds_beta/files/news_stopwords.txt
  • 33
    • 84893466108 scopus 로고    scopus 로고
    • Monitoring Public Health Concerns Using Twitter Sentiment Classifications
    • Proceedings of IEEE International Conference on Healthcare Informatics, Philadelphia
    • Ji X, Chun SA, Geller J (2013) Monitoring Public Health Concerns Using Twitter Sentiment Classifications. In: Proceedings of IEEE International Conference on Healthcare Informatics. Philadelphia
    • (2013) In
    • Ji, X.1    Chun, S.A.2    Geller, J.3
  • 35
    • 84868597583 scopus 로고    scopus 로고
    • Johansson F, Brynielsson J, Quijano MN (2012)Estimating citizen alertness in crises using social media monitoring and analysis. In: Intelligence and Security Informatics Conference (EISIC). pp 189–196
    • Johansson F, Brynielsson J, Quijano MN (2012)Estimating citizen alertness in crises using social media monitoring and analysis. In: Intelligence and Security Informatics Conference (EISIC). pp 189–196
  • 37
    • 85128719106 scopus 로고    scopus 로고
    • Twitter sentiment analysis: the good the bad and the omg!
    • Kouloumpis E, Wilson T, Moore J (2011) Twitter sentiment analysis: the good the bad and the omg! Icwsm 11:538–541
    • (2011) Icwsm , vol.11 , pp. 538-541
    • Kouloumpis, E.1    Wilson, T.2    Moore, J.3
  • 38
    • 78349278107 scopus 로고    scopus 로고
    • Tracking the flu pandemic by monitoring the Social Web. In: Proceedings of IEEE International Conference on Digital Ecosystems and Technologies
    • Lampos V, Cristianini N (2010) Tracking the flu pandemic by monitoring the Social Web. In: Proceedings of IEEE International Conference on Digital Ecosystems and Technologies. pp 411–416
    • (2010) pp 411–416
    • Lampos, V.1    Cristianini, N.2
  • 39
    • 0017360990 scopus 로고
    • The measurement of observer agreement for categorical data
    • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics:159–174
    • (1977) Biometrics , pp. 159-174
    • Landis, J.R.1    Koch, G.G.2
  • 40
    • 34249751638 scopus 로고    scopus 로고
    • The link prediction problem for social networks
    • Liben Nowell D, Kleinberg J (2007) The link prediction problem for social networks. J Am Soc Inform Sci Technol 58(7):1019–1031
    • (2007) J Am Soc Inform Sci Technol , vol.58 , Issue.7 , pp. 1019-1031
    • Liben Nowell, D.1    Kleinberg, J.2
  • 41
    • 84866007229 scopus 로고    scopus 로고
    • A survey of opinion mining and sentiment analysis. In: Mining Text Data
    • Liu B, Zhang L (2012) A survey of opinion mining and sentiment analysis. In: Mining Text Data. pp 415–463
    • (2012) pp 415–463
    • Liu, B.1    Zhang, L.2
  • 43
    • 85070357722 scopus 로고    scopus 로고
    • Understanding the Demographics of Twitter Users. In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (ICWSM’11)
    • Mislove A, Lehmann S, Ahn Y-Y, Onnela J-P, Rosenquist JN (2011) Understanding the Demographics of Twitter Users. In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (ICWSM’11). pp 554–557
    • (2011) pp 554–557
    • Mislove, A.1    Lehmann, S.2    Ahn, Y.-Y.3    Onnela, J.-P.4    Rosenquist, J.N.5
  • 44
    • 84910073944 scopus 로고    scopus 로고
    • NRC-Canada: building the state-of-the-art in sentiment analysis of tweets
    • Mohammad SM, Kiritchenko S, Zhu X (2013) NRC-Canada: building the state-of-the-art in sentiment analysis of tweets. arXiv:13086242
    • (2013) arXiv:13086242
    • Mohammad, S.M.1    Kiritchenko, S.2    Zhu, X.3
  • 48
    • 48449095896 scopus 로고    scopus 로고
    • Opinion mining and sentiment analysis
    • Pang B, Lee L (2008) Opinion mining and sentiment analysis. Found Trends Inf Retr 2(1–2):1–135
    • (2008) Found Trends Inf Retr , vol.2 , Issue.1-2 , pp. 1-135
    • Pang, B.1    Lee, L.2
  • 51
    • 84892157824 scopus 로고    scopus 로고
    • Exploiting Twitter for Border Security-Related Intelligence Gathering. In: European Intelligence and Security Informatics Conference (EISIC)
    • Piskorski J, Tanev H, Balahur A (2013) Exploiting Twitter for Border Security-Related Intelligence Gathering. In: European Intelligence and Security Informatics Conference (EISIC). pp 239–246
    • (2013) pp 239–246
    • Piskorski, J.1    Tanev, H.2    Balahur, A.3
  • 54
    • 84947295149 scopus 로고    scopus 로고
    • Reuters (2014) Americans ‘can’t give into hysteria or fear’ over Ebola: Obama
    • Reuters (2014) Americans ‘can’t give into hysteria or fear’ over Ebola: Obama. http://www.reuters.com/article/2014/10/18/us-health-ebola-usa-idUSKCN0I61BO20141018
  • 55
    • 84874703151 scopus 로고    scopus 로고
    • A multidimensional approach for detecting irony in twitter
    • Reyes A, Rosso P, Veale T (2013) A multidimensional approach for detecting irony in twitter. Lang Resour Eval 47(1):239–268
    • (2013) Lang Resour Eval , vol.47 , Issue.1 , pp. 239-268
    • Reyes, A.1    Rosso, P.2    Veale, T.3
  • 56
    • 85107820398 scopus 로고    scopus 로고
    • Learning extraction patterns for subjective expressions. In: Proceedings of the 2003 conference on Empirical methods in natural language processing
    • Riloff E, Wiebe J (2003) Learning extraction patterns for subjective expressions. In: Proceedings of the 2003 conference on Empirical methods in natural language processing. pp 105–112
    • (2003) pp 105–112
    • Riloff, E.1    Wiebe, J.2
  • 57
    • 84868588570 scopus 로고    scopus 로고
    • Semantic sentiment analysis of twitter
    • Saif H, He Y, Alani H (2012) Semantic sentiment analysis of twitter. In: The Semantic Web–ISWC 2012. pp 508–524
    • (2012) The Semantic Web–ISWC , vol.2012 , pp. 508-524
    • Saif, H.1    He, Y.2    Alani, H.3
  • 59
    • 84921844405 scopus 로고    scopus 로고
    • Automatic stopword generation using contextual semantics for sentiment analysis of Twitter
    • In, Proceedings of CEUR Workshop
    • Saif H, Fernández M, Alani H (2014) Automatic stopword generation using contextual semantics for sentiment analysis of Twitter. In: Proceedings of CEUR Workshop
    • (2014)
    • Saif, H.1    Fernández, M.2    Alani, H.3
  • 60
    • 80055065085 scopus 로고    scopus 로고
    • Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control
    • Salathe M, Khandelwal S (2011) Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control. PLoS Comput Biol 7(10)
    • (2011) PLoS Comput Biol , vol.7 , Issue.10
    • Salathe, M.1    Khandelwal, S.2
  • 62
    • 79955757514 scopus 로고    scopus 로고
    • The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic
    • Signorini A, Segre AM, Polgreen PM (2011) The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS One 6(5):e19467
    • (2011) PLoS One , vol.6 , Issue.5 , pp. e19467
    • Signorini, A.1    Segre, A.M.2    Polgreen, P.M.3
  • 63
    • 84880193020 scopus 로고    scopus 로고
    • Emotions and information diffusion in social media—sentiment of microblogs and sharing behavior
    • Stieglitz S, Dang-Xuan L (2013) Emotions and information diffusion in social media—sentiment of microblogs and sharing behavior. J Manag Inf Syst 29(4):217–248
    • (2013) J Manag Inf Syst , vol.29 , Issue.4 , pp. 217-248
    • Stieglitz, S.1    Dang-Xuan, L.2
  • 64
    • 84947258179 scopus 로고    scopus 로고
    • Twitter (2014a) Twitter
    • Twitter (2014a) Twitter. http://en.wikipedia.org/wiki/Twitter
  • 65
    • 84947242736 scopus 로고    scopus 로고
    • Twitter (2014b) Twitter Developers Documentation
    • Twitter (2014b) Twitter Developers Documentation. https://dev.twitter.com/docs
  • 66
    • 84947244726 scopus 로고    scopus 로고
    • Twitter4J (2014) Twitter4J
    • Twitter4J (2014) Twitter4J. http://twitter4j.org/en/
  • 67
    • 85041432458 scopus 로고    scopus 로고
    • A unified theory of irony and its computational formalization. In: Proceedings of the 16th conference on Computational linguistics, vol. 2. Association for Computational Linguistics
    • Utsumi A (1996) A unified theory of irony and its computational formalization. In: Proceedings of the 16th conference on Computational linguistics, vol. 2. Association for Computational Linguistics, pp 962–967
    • (1996) pp 962–967
    • Utsumi, A.1
  • 69
    • 85041442107 scopus 로고    scopus 로고
    • A survey on the role of negation in sentiment analysis. In: Proceedings of the workshop on negation and speculation in natural language processing
    • Wiegand M, Balahur A, Roth B, Klakow D, Montoyo A (2010) A survey on the role of negation in sentiment analysis. In: Proceedings of the workshop on negation and speculation in natural language processing. pp 60–68
    • (2010) pp 60–68
    • Wiegand, M.1    Balahur, A.2    Roth, B.3    Klakow, D.4    Montoyo, A.5
  • 70
    • 85041439746 scopus 로고    scopus 로고
    • Annotating opinions in the World Press. In: Proceedings of SIGdial-03
    • Wilson T, Wiebe J (2003) Annotating opinions in the World Press. In: Proceedings of SIGdial-03. pp 13–22
    • (2003) pp 13–22
    • Wilson, T.1    Wiebe, J.2
  • 71
    • 80053247760 scopus 로고    scopus 로고
    • In, Proceedings of Human Language Technologies Conference/Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP
    • Wilson T, Wiebe J, Hoffmann P (2005) Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. In: Proceedings of Human Language Technologies Conference/Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP 2005)
    • (2005) Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , pp. 2005
    • Wilson, T.1    Wiebe, J.2    Hoffmann, P.3
  • 72
    • 84947233296 scopus 로고    scopus 로고
    • Liu B: Combining lexicon-based and learning-based methods for Twitter sentiment analysis
    • Zhang L, Ghosh R, Dekhil M, Hsu M, Liu B (2011) Combining lexicon-based and learning-based methods for Twitter sentiment analysis
    • (2011) Hsu M
    • Zhang, L.1    Ghosh, R.2    Dekhil, M.3
  • 73
    • 84904192791 scopus 로고    scopus 로고
    • Sentiment Analysis on Twitter through Topic-Based Lexicon Expansion. In: Databases Theory and Applications
    • Zhou Z, Zhang X, Sanderson M (2014) Sentiment Analysis on Twitter through Topic-Based Lexicon Expansion. In: Databases Theory and Applications. pp 98–109
    • (2014) pp 98–109
    • Zhou, Z.1    Zhang, X.2    Sanderson, M.3
  • 74
    • 50049103449 scopus 로고    scopus 로고
    • Changes in emotion of the Chinese public in regard to the SARS period
    • Zhu X, Wu S, Miao D, Li Y (2008) Changes in emotion of the Chinese public in regard to the SARS period. Social Behav Personal 36(4):447
    • (2008) Social Behav Personal , vol.36 , Issue.4 , pp. 447
    • Zhu, X.1    Wu, S.2    Miao, D.3    Li, Y.4
  • 75
    • 34547619773 scopus 로고    scopus 로고
    • Movie review mining and summarization. In: Proceedings of the 15th ACM international conference on Information and knowledge management
    • Zhuang L, Jing F, Zhu XY (2006) Movie review mining and summarization. In: Proceedings of the 15th ACM international conference on Information and knowledge management. pp 43–50
    • (2006) pp 43–50
    • Zhuang, L.1    Jing, F.2    Zhu, X.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.