-
1
-
-
85067836198
-
Catégories topologiques et catégories différentiables. In: Colloque de Géométrie Différentielle Globale. C.B.R.M. pp. 137–150. Librairie Universitaire
-
Ehresmann, C.: Catégories topologiques et catégories différentiables. In: Colloque de Géométrie Différentielle Globale. C.B.R.M. pp. 137–150. Librairie Universitaire, Louvain (1959)
-
(1959)
Louvain
-
-
Ehresmann, C.1
-
2
-
-
84909524615
-
Categories topologiques. iii
-
Ehresmann, C.: Categories topologiques. iii. Indagationes Mathematicae (Proceed-ings) 69, 161–175 (1966). https://doi.org/10.1016/S1385-7258(66)50023-3
-
(1966)
Indagationes Mathematicae (Proceed-Ings)
, vol.69
, pp. 161-175
-
-
Ehresmann, C.1
-
3
-
-
79959626737
-
Commuting groups and the topos of triads
-
Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.), pp., Springer, Heidelberg
-
Fiore, T.M., Noll, T.: Commuting groups and the topos of triads. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS (LNAI), vol. 6726, pp. 69–83. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21590-2 6
-
(2011)
MCM 2011. LNCS (LNAI)
, vol.6726
, pp. 69-83
-
-
Fiore, T.M.1
Noll, T.2
-
4
-
-
33745922738
-
Uniform triadic transformations
-
Hook, J.: Uniform triadic transformations. J. Music Theory 46(1/2), 57–126 (2002). http://www.jstor.org/stable/4147678
-
(2002)
J. Music Theory
, vol.46
, Issue.1-2
, pp. 57-126
-
-
Hook, J.1
-
6
-
-
60949442137
-
The inner and outer automorphisms of pitch-class inversion and transposition: Some implications for analysis with Klumpenhouwer networks
-
Klumpenhouwer, H.: The inner and outer automorphisms of pitch-class inversion and transposition: some implications for analysis with Klumpenhouwer networks. Intégral 12, 81–93 (1998). http://www.jstor.org/stable/40213985
-
(1998)
Intégral
, vol.12
, pp. 81-93
-
-
Klumpenhouwer, H.1
-
7
-
-
61249586856
-
Transformational techniques in atonal and other music theories
-
Lewin, D.: Transformational techniques in atonal and other music theories. Persp. New Music 21(1–2), 312–381 (1982)
-
(1982)
Persp. New Music
, vol.21
, Issue.1-2
, pp. 312-381
-
-
Lewin, D.1
-
9
-
-
61249601764
-
Klumpenhouwer networks and some isographies that involve them
-
Lewin, D.: Klumpenhouwer networks and some isographies that involve them. Music Theory Spectr. 12(1), 83–120 (1990)
-
(1990)
Music Theory Spectr
, vol.12
, Issue.1
, pp. 83-120
-
-
Lewin, D.1
-
11
-
-
77955765331
-
From a categorical point of view: K-nets as limit denotators
-
Mazzola, G., Andreatta, M.: From a categorical point of view: K-nets as limit denotators. Persp. New Music 44(2), 88–113 (2006). http://www.jstor.org/stable/25164629
-
(2006)
Persp. New Music
, vol.44
, Issue.2
, pp. 88-113
-
-
Mazzola, G.1
Andreatta, M.2
-
12
-
-
77955726690
-
Thoughts on Klumpenhouwer networks and mathematical models: The synergy of sets and graphs
-
Nolan, C.: Thoughts on Klumpenhouwer networks and mathematical models: the synergy of sets and graphs. Music Theory Online 13(3) (2007)
-
(2007)
Music Theory Online
, vol.13
, Issue.3
-
-
Nolan, C.1
-
13
-
-
79955642746
-
Generalized commuting groups
-
Peck, R.: Generalized commuting groups. J. Music Theory 54(2), 143–177 (2010). http://www.jstor.org/stable/41300116
-
(2010)
J. Music Theory
, vol.54
, Issue.2
, pp. 143-177
-
-
Peck, R.1
-
14
-
-
79955600860
-
Wreath products in transformational music theory
-
Peck, R.W.: Wreath products in transformational music theory. Persp. New Music 47(1), 193–210 (2009). http://www.jstor.org/stable/25652406
-
(2009)
Persp. New Music
, vol.47
, Issue.1
, pp. 193-210
-
-
Peck, R.W.1
-
15
-
-
85067897032
-
Opycleid: A Python package for transformational music theory
-
Popoff, A.: Opycleid: a Python package for transformational music theory. J. Open Source Softw. 3(32), 981 (2018). https://doi.org/10.21105/joss.00981
-
(2018)
J. Open Source Softw.
, vol.3
, Issue.32
, pp. 981
-
-
Popoff, A.1
-
16
-
-
85028544269
-
From K-nets to PK-nets: A categorical approach
-
Popoff, A., Agon, C., Andreatta, M., Ehresmann, A.: From K-nets to PK-nets: a categorical approach. Persp. New Music 54(2), 5–63 (2016). http://www.jstor. org/stable/10.7757/persnewmusi.54.2.0005
-
(2016)
Persp. New Music
, vol.54
, Issue.2
, pp. 5-63
-
-
Popoff, A.1
Agon, C.2
Andreatta, M.3
Ehresmann, A.4
-
17
-
-
84949035933
-
A categorical generalization of Klumpenhouwer networks
-
Collins, T., Meredith, D., Volk, A. (eds.)
-
Popoff, A., Andreatta, M., Ehresmann, A.: A categorical generalization of Klumpenhouwer networks. In: Collins, T., Meredith, D., Volk, A. (eds.) MCM 2015. LNCS (LNAI), vol. 9110, pp. 303–314. Springer, Cham (2015). https://doi. org/10.1007/978-3-319-20603-5 31
-
(2015)
MCM 2015. LNCS (LNAI)
, vol.9110
, pp. 303-314
-
-
Popoff, A.1
Andreatta, M.2
Ehresmann, A.3
-
18
-
-
85052059859
-
Relational poly-Klumpenhouwer networks for transformational and voice-leading analysis
-
Popoff, A., Andreatta, M., Ehresmann, A.: Relational poly-Klumpenhouwer networks for transformational and voice-leading analysis. J. Math. Music 12(1), 35–55 (2018). https://doi.org/10.1080/17459737.2017.1406011
-
(2018)
J. Math. Music
, vol.12
, Issue.1
, pp. 35-55
-
-
Popoff, A.1
Andreatta, M.2
Ehresmann, A.3
|