-
1
-
-
61249586856
-
Transformational techniques in atonal and other music theories
-
Lewin, D.: Transformational techniques in atonal and other music theories. Perspect. New Music 21(1–2), 312–371 (1982)
-
(1982)
Perspect. New Music
, vol.21
, Issue.1-2
, pp. 312-371
-
-
Lewin, D.1
-
6
-
-
79959626737
-
Commuting groups and the topos of triads
-
In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.), Springer, Heidelberg
-
Fiore, T.M., Noll, T.: Commuting groups and the topos of triads. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS, vol. 6726, pp. 69–83. Springer, Heidelberg (2011)
-
(2011)
MCM 2011. LNCS
, vol.6726
, pp. 69-83
-
-
Fiore, T.M.1
Noll, T.2
-
8
-
-
67649941317
-
Transfer principles for generalized interval systems
-
Kolman, O.: Transfer principles for generalized interval systems. Perspect. New Music 42(1), 150–189 (2004)
-
(2004)
Perspect. New Music
, vol.42
, Issue.1
, pp. 150-189
-
-
Kolman, O.1
-
9
-
-
84877738585
-
Morphisms of generalized interval systems and PR-groups
-
Fiore, T.M., Noll, T., Satyendra, R.: Morphisms of generalized interval systems and PR-groups. J. Math. Music 7(1), 3–27 (2013)
-
(2013)
J. Math. Music
, vol.7
, Issue.1
, pp. 3-27
-
-
Fiore, T.M.1
Noll, T.2
Satyendra, R.3
-
10
-
-
77955726690
-
Thoughts on Klumpenhouwer networks and mathematical models: The synergy of sets and graphs
-
Nolan, C.: Thoughts on Klumpenhouwer networks and mathematical models: the synergy of sets and graphs. Music Theory Online 13(3), 1–6 (2007)
-
(2007)
Music Theory Online
, vol.13
, Issue.3
, pp. 1-6
-
-
Nolan, C.1
-
11
-
-
61249601764
-
Klumpenhouwer networks and some isographies that involve them
-
Lewin, D.: Klumpenhouwer networks and some isographies that involve them. Music Theory Spectr. 12(1), 83–120 (1990)
-
(1990)
Music Theory Spectr
, vol.12
, Issue.1
, pp. 83-120
-
-
Lewin, D.1
-
13
-
-
60949442137
-
The inner and outer automorphisms of pitch-class inversion and transposition
-
Klumpenhouwer, H.: The inner and outer automorphisms of pitch-class inversion and transposition. Intégral 12, 25–52 (1998)
-
(1998)
Intégral
, vol.12
, pp. 25-52
-
-
Klumpenhouwer, H.1
-
14
-
-
77955765331
-
From a categorical point of view: K-nets as limit denotators. Perspect
-
Mazzola, G., Andreatta, M.: From a categorical point of view: K-nets as limit denotators. Perspect. New Music 44(2), 88–113 (2006)
-
(2006)
New Music
, vol.44
, Issue.2
, pp. 88-113
-
-
Mazzola, G.1
Reatta, M.2
-
15
-
-
0002905933
-
Gattungen von lokalen Strukturen
-
Ehresmann, C.: Gattungen von lokalen Strukturen. Jahresber. Dtsch. Math. Ver. 60, 49–77 (1957)
-
(1957)
Jahresber. Dtsch. Math. Ver
, vol.60
, pp. 49-77
-
-
Ehresmann, C.1
-
16
-
-
77958035503
-
Some mathematical aspects of David Lewin’s book generalized musical intervals and transformations
-
Vuza, D.: Some mathematical aspects of David Lewin’s book generalized musical intervals and transformations. Perspect. New Music 26(1), 258–287 (1988)
-
(1988)
Perspect. New Music
, vol.26
, Issue.1
, pp. 258-287
-
-
Vuza, D.1
-
17
-
-
84968513618
-
Adjoint functors
-
Kan, D.M.: Adjoint functors. Trans. Am. Math. Soc. 87, 294–329 (1958)
-
(1958)
Trans. Am. Math. Soc
, vol.87
, pp. 294-329
-
-
Kan, D.M.1
-
18
-
-
49549110968
-
-
IRCAM-Delatour France, Sampzon
-
Agon, C., Assayag, G., Bresson, J.: The OM Composer’s Book. Collection “Musique/Sciences”. IRCAM-Delatour France, Sampzon (2006)
-
(2006)
The OM Composer’s Book. Collection “Musique/Sciences”
-
-
Agon, C.1
Assayag, G.2
Bresson, J.3
-
19
-
-
84884478433
-
Towards a categorical theory of creativity for music, discourse, and cognition
-
In: Yust, J., Wild, J., Burgoyne, J.A. (eds.), Springer, Heidelberg
-
Andreatta, M., Ehresmann, A., Guitart, R., Mazzola, G.: Towards a categorical theory of creativity for music, discourse, and cognition. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS, vol. 7937, pp. 19–37. Springer, Heidelberg (2013)
-
(2013)
MCM 2013. LNCS
, vol.7937
, pp. 19-37
-
-
Andreatta, M.1
Ehresmann, A.2
Guitart, R.3
Mazzola, G.4
|