-
1
-
-
84907576760
-
Modeling and Implementing Tiling Rhythmic Canons in OpenMusic Visual Programming Language
-
Agon C., and M. Andreatta. 2011. “Modeling and Implementing Tiling Rhythmic Canons in OpenMusic Visual Programming Language.” Perspectives of New Music 49/2: 33–64.
-
(2011)
Perspectives of New Music
, vol.49
, Issue.2
, pp. 33-64
-
-
Agon, C.1
Andreatta, M.2
-
2
-
-
84884478433
-
Towards a Categorical Theory of Creativity
-
ed. Yust et al, LNAI/LNCS 7937. Springer
-
Andreatta, M., A. Ehresmann, R. Guitart, and G. Mazzola. 2013. “Towards a Categorical Theory of Creativity.” In Proceedings of the MCM 2013 Conference, ed. Yust et al., 19–37. LNAI/LNCS 7937. Springer.
-
(2013)
In Proceedings of the MCM 2013 Conference
, pp. 19-37
-
-
Andreatta, M.1
Ehresmann, A.2
Guitart, R.3
Mazzola, G.4
-
5
-
-
79959626737
-
Commuting Groups and The Topos of Triads
-
Fiore, Th. M., and Th. Noll. 2011. “Commuting Groups and The Topos of Triads.” Proceedings MCM 2011, pp. 69–83.
-
(2011)
Proceedings MCM 2011
, pp. 69-83
-
-
Fiore, T.M.1
Noll, T.H.2
-
7
-
-
51249156018
-
Cross-Type Transformations and the Path Consistency Condition”
-
Hook, Julian. 2007. “Cross-Type Transformations and the Path Consistency Condition” Music Theory Spectrum 29/1: 1–39.
-
(2007)
Music Theory Spectrum
, vol.29
, Issue.1
, pp. 1-39
-
-
Hook, J.1
-
10
-
-
60949442137
-
The Inner and Outer Automorphisms of Pitch-Class Inversion and Transposition: Some Implications for Analysis with Klumpenhouwer Networks
-
Klumpenhouwer, H. 1998. The Inner and Outer Automorphisms of Pitch-Class Inversion and Transposition: Some Implications for Analysis with Klumpenhouwer Networks.” Intégral 12: 25–52.
-
(1998)
Intégral
, vol.12
, pp. 25-52
-
-
Klumpenhouwer, H.1
-
11
-
-
67649941317
-
Transfer Principles for Generalized Interval Systems
-
Kolman, O. 2004. “Transfer Principles for Generalized Interval Systems.” Perspectives of New Music 42/1: 150–189.
-
(2004)
Perspectives of New Music
, vol.42
, Issue.1
, pp. 150-189
-
-
Kolman, O.1
-
13
-
-
61249586856
-
Transformational Techniques in Atonal and Other Music Theories
-
Lewin, David. 1982. “Transformational Techniques in Atonal and Other Music Theories.” Perspectives of New Music 21/1–2: 312–371.
-
(1982)
Perspectives of New Music
, vol.21
, Issue.1-2
, pp. 312-371
-
-
Lewin, D.1
-
15
-
-
61249601764
-
Klumpenhouwer Networks and Some Isographies That Involve Them
-
Lewin, David. 1990. “Klumpenhouwer Networks and Some Isographies That Involve Them.” Music Theory Spectrum 12/1: 83–120.
-
(1990)
Music Theory Spectrum
, vol.12
, Issue.1
, pp. 83-120
-
-
Lewin, D.1
-
16
-
-
60949407784
-
A Tutorial on Klumpenhouwer Networks, Using the Chorale in Schoenberg’s Opus 11, No. 2
-
Lewin, David. 1994. “A Tutorial on Klumpenhouwer Networks, Using the Chorale in Schoenberg’s Opus 11, No. 2.” Journal of Music Theory 38/1: 79–101.
-
(1994)
Journal of Music Theory
, vol.38
, Issue.1
, pp. 79-101
-
-
Lewin, D.1
-
21
-
-
77955765331
-
From a Categorical Point of View: K-nets as Limit Denotators
-
Mazzola, G., and M. Andreatta. 2006. “From a Categorical Point of View: K-nets as Limit Denotators.” Perspectives of New Music 44/2: 88–113.
-
(2006)
Perspectives of New Music
, vol.44
, Issue.2
, pp. 88-113
-
-
Mazzola, G.1
Andreatta, M.2
-
22
-
-
77955726690
-
Thoughts on Klumpenhouwer Networks and Mathematical Models: The Synergy of Sets and Graphs
-
Nolan, C. 2007. “Thoughts on Klumpenhouwer Networks and Mathematical Models: The Synergy of Sets and Graphs.” Music Theory Online 13/3.
-
(2007)
Music Theory Online
, vol.13
, Issue.3
-
-
Nolan, C.1
-
23
-
-
79959605502
-
The Topos of Triads
-
H. Fripertinger and R. Reich (eds.), Grazer Math. Ber
-
Noll, Th. 2005 “The Topos of Triads.” In Colloquium on Mathe-matical Music Theory, H. Fripertinger and R. Reich (eds.), 103–135. Grazer Math. Ber.
-
(2005)
Colloquium on Mathe-Matical Music Theory
, pp. 103-135
-
-
Noll, T.1
-
25
-
-
84949035933
-
A Categorical Generalization of Klumpenhouwer Networks
-
Collins et al. (eds), LNAI/LNCS 9110Springer
-
Popoff, A., M. Andreatta, and A. Ehresmann. 2015. “A Categorical Generalization of Klumpenhouwer Networks.” In Proceedings of the MCM 2015 Conference, Collins et al. (eds), 303–314. LNAI/LNCS 9110. Springer.
-
(2015)
In Proceedings of the MCM 2015 Conference
, pp. 303-314
-
-
Popoff, A.1
Andreatta, M.2
Ehresmann, A.3
-
26
-
-
77958035503
-
Some Mathematical Aspects of David Lewin’s Book Generalized Musical Intervals and Transformations
-
Vuza, D. 1988. “Some Mathematical Aspects of David Lewin’s Book Generalized Musical Intervals and Transformations.” Perspectives of New Music 26/1: 258–287.
-
(1988)
Perspectives of New Music
, vol.26
, Issue.1
, pp. 258-287
-
-
Vuza, D.1
|