메뉴 건너뛰기




Volumn 54, Issue 2, 2016, Pages 5-63

From K-nets to PK-nets: A categorical approach

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85028544269     PISSN: 00316016     EISSN: None     Source Type: Journal    
DOI: 10.7757/persnewmusi.54.2.0005     Document Type: Note
Times cited : (11)

References (26)
  • 1
    • 84907576760 scopus 로고    scopus 로고
    • Modeling and Implementing Tiling Rhythmic Canons in OpenMusic Visual Programming Language
    • Agon C., and M. Andreatta. 2011. “Modeling and Implementing Tiling Rhythmic Canons in OpenMusic Visual Programming Language.” Perspectives of New Music 49/2: 33–64.
    • (2011) Perspectives of New Music , vol.49 , Issue.2 , pp. 33-64
    • Agon, C.1    Andreatta, M.2
  • 5
    • 79959626737 scopus 로고    scopus 로고
    • Commuting Groups and The Topos of Triads
    • Fiore, Th. M., and Th. Noll. 2011. “Commuting Groups and The Topos of Triads.” Proceedings MCM 2011, pp. 69–83.
    • (2011) Proceedings MCM 2011 , pp. 69-83
    • Fiore, T.M.1    Noll, T.H.2
  • 7
    • 51249156018 scopus 로고    scopus 로고
    • Cross-Type Transformations and the Path Consistency Condition”
    • Hook, Julian. 2007. “Cross-Type Transformations and the Path Consistency Condition” Music Theory Spectrum 29/1: 1–39.
    • (2007) Music Theory Spectrum , vol.29 , Issue.1 , pp. 1-39
    • Hook, J.1
  • 10
    • 60949442137 scopus 로고    scopus 로고
    • The Inner and Outer Automorphisms of Pitch-Class Inversion and Transposition: Some Implications for Analysis with Klumpenhouwer Networks
    • Klumpenhouwer, H. 1998. The Inner and Outer Automorphisms of Pitch-Class Inversion and Transposition: Some Implications for Analysis with Klumpenhouwer Networks.” Intégral 12: 25–52.
    • (1998) Intégral , vol.12 , pp. 25-52
    • Klumpenhouwer, H.1
  • 11
    • 67649941317 scopus 로고    scopus 로고
    • Transfer Principles for Generalized Interval Systems
    • Kolman, O. 2004. “Transfer Principles for Generalized Interval Systems.” Perspectives of New Music 42/1: 150–189.
    • (2004) Perspectives of New Music , vol.42 , Issue.1 , pp. 150-189
    • Kolman, O.1
  • 13
    • 61249586856 scopus 로고
    • Transformational Techniques in Atonal and Other Music Theories
    • Lewin, David. 1982. “Transformational Techniques in Atonal and Other Music Theories.” Perspectives of New Music 21/1–2: 312–371.
    • (1982) Perspectives of New Music , vol.21 , Issue.1-2 , pp. 312-371
    • Lewin, D.1
  • 15
    • 61249601764 scopus 로고
    • Klumpenhouwer Networks and Some Isographies That Involve Them
    • Lewin, David. 1990. “Klumpenhouwer Networks and Some Isographies That Involve Them.” Music Theory Spectrum 12/1: 83–120.
    • (1990) Music Theory Spectrum , vol.12 , Issue.1 , pp. 83-120
    • Lewin, D.1
  • 16
    • 60949407784 scopus 로고
    • A Tutorial on Klumpenhouwer Networks, Using the Chorale in Schoenberg’s Opus 11, No. 2
    • Lewin, David. 1994. “A Tutorial on Klumpenhouwer Networks, Using the Chorale in Schoenberg’s Opus 11, No. 2.” Journal of Music Theory 38/1: 79–101.
    • (1994) Journal of Music Theory , vol.38 , Issue.1 , pp. 79-101
    • Lewin, D.1
  • 21
    • 77955765331 scopus 로고    scopus 로고
    • From a Categorical Point of View: K-nets as Limit Denotators
    • Mazzola, G., and M. Andreatta. 2006. “From a Categorical Point of View: K-nets as Limit Denotators.” Perspectives of New Music 44/2: 88–113.
    • (2006) Perspectives of New Music , vol.44 , Issue.2 , pp. 88-113
    • Mazzola, G.1    Andreatta, M.2
  • 22
    • 77955726690 scopus 로고    scopus 로고
    • Thoughts on Klumpenhouwer Networks and Mathematical Models: The Synergy of Sets and Graphs
    • Nolan, C. 2007. “Thoughts on Klumpenhouwer Networks and Mathematical Models: The Synergy of Sets and Graphs.” Music Theory Online 13/3.
    • (2007) Music Theory Online , vol.13 , Issue.3
    • Nolan, C.1
  • 23
    • 79959605502 scopus 로고    scopus 로고
    • The Topos of Triads
    • H. Fripertinger and R. Reich (eds.), Grazer Math. Ber
    • Noll, Th. 2005 “The Topos of Triads.” In Colloquium on Mathe-matical Music Theory, H. Fripertinger and R. Reich (eds.), 103–135. Grazer Math. Ber.
    • (2005) Colloquium on Mathe-Matical Music Theory , pp. 103-135
    • Noll, T.1
  • 25
    • 84949035933 scopus 로고    scopus 로고
    • A Categorical Generalization of Klumpenhouwer Networks
    • Collins et al. (eds), LNAI/LNCS 9110Springer
    • Popoff, A., M. Andreatta, and A. Ehresmann. 2015. “A Categorical Generalization of Klumpenhouwer Networks.” In Proceedings of the MCM 2015 Conference, Collins et al. (eds), 303–314. LNAI/LNCS 9110. Springer.
    • (2015) In Proceedings of the MCM 2015 Conference , pp. 303-314
    • Popoff, A.1    Andreatta, M.2    Ehresmann, A.3
  • 26
    • 77958035503 scopus 로고
    • Some Mathematical Aspects of David Lewin’s Book Generalized Musical Intervals and Transformations
    • Vuza, D. 1988. “Some Mathematical Aspects of David Lewin’s Book Generalized Musical Intervals and Transformations.” Perspectives of New Music 26/1: 258–287.
    • (1988) Perspectives of New Music , vol.26 , Issue.1 , pp. 258-287
    • Vuza, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.