메뉴 건너뛰기




Volumn 10, Issue 1, 2019, Pages 83-98

A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses

Author keywords

DerSimonian Laird; heterogeneity; random effects; REML; simulation

Indexed keywords

ALGORITHM; ANALYSIS OF VARIANCE; COMPARATIVE STUDY; COMPUTER SIMULATION; HUMAN; META ANALYSIS (TOPIC); METHODOLOGY; ODDS RATIO; PROBABILITY; REPRODUCIBILITY; SELECTION BIAS; SOFTWARE; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 85062528296     PISSN: None     EISSN: 17592887     Source Type: Journal    
DOI: 10.1002/jrsm.1316     Document Type: Article
Times cited : (511)

References (50)
  • 1
    • 0022992740 scopus 로고
    • Meta-analysis in clinical trials
    • DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177-188.
    • (1986) Control Clin Trials , vol.7 , Issue.3 , pp. 177-188
    • DerSimonian, R.1    Laird, N.2
  • 2
    • 14544296347 scopus 로고    scopus 로고
    • Nonparametric estimation of heterogeneity variance for the standardised difference used in meta-analysis
    • Malzahn U, Böhning D, Holling H. Nonparametric estimation of heterogeneity variance for the standardised difference used in meta-analysis. Biometrika. 2000;87(3):619-632. https://doi.org/10.1093/biomet/87.3.619
    • (2000) Biometrika , vol.87 , Issue.3 , pp. 619-632
    • Malzahn, U.1    Böhning, D.2    Holling, H.3
  • 3
    • 84890811125 scopus 로고    scopus 로고
    • Estimation of between-trial variance in sequential meta-analyses: a simulation study
    • Novianti PW, Roes KCB, van der Tweel I. Estimation of between-trial variance in sequential meta-analyses: a simulation study. Contemp Clin Trials. 2014;37(1):129-138. https://doi.org/10.1016/j.cct.2013.11.012
    • (2014) Contemp Clin Trials , vol.37 , Issue.1 , pp. 129-138
    • Novianti, P.W.1    Roes, K.C.B.2    van der Tweel, I.3
  • 4
    • 34047237099 scopus 로고    scopus 로고
    • A comparison of heterogeneity variance estimators in combining results of studies
    • Sidik K, Jonkman JN. A comparison of heterogeneity variance estimators in combining results of studies. Stat Med. 2007;26(9):1964-1981. https://doi.org/10.1002/sim.2688
    • (2007) Stat Med , vol.26 , Issue.9 , pp. 1964-1981
    • Sidik, K.1    Jonkman, J.N.2
  • 5
    • 84959297600 scopus 로고    scopus 로고
    • Methods to estimate heterogeneity variance and its uncertainty in meta-analysis
    • Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate heterogeneity variance and its uncertainty in meta-analysis. Res Syn Meth. 2015;7(1):55-79. https://doi.org/10.1002/jrsm.1164
    • (2015) Res Syn Meth , vol.7 , Issue.1 , pp. 55-79
    • Veroniki, A.A.1    Jackson, D.2    Viechtbauer, W.3
  • 6
    • 0020178780 scopus 로고
    • Consensus values and weighting factors
    • Paule RC, Mandel J. Consensus values and weighting factors. J Res Natl Bur Stand. 1982;87(5):377-385.
    • (1982) J Res Natl Bur Stand , vol.87 , Issue.5 , pp. 377-385
    • Paule, R.C.1    Mandel, J.2
  • 7
    • 0242382677 scopus 로고    scopus 로고
    • Reducing the number of unjustified significant results in meta-analysis
    • Hartung J, Makambi KH. Reducing the number of unjustified significant results in meta-analysis. Commun Stat Simul Comput. 2003;32(4):1179-1190. https://doi.org/10.1081/SAC-120023884
    • (2003) Commun Stat Simul Comput , vol.32 , Issue.4 , pp. 1179-1190
    • Hartung, J.1    Makambi, K.H.2
  • 8
    • 14544281532 scopus 로고    scopus 로고
    • Simple heterogeneity variance estimation for meta-analysis
    • Sidik K, Jonkman JN. Simple heterogeneity variance estimation for meta-analysis. J R Stat Soc Ser B Appl Stat. 2005;54(2):367-384. https://doi.org/10.1111/j.1467-9876.2005.00489.x
    • (2005) J R Stat Soc Ser B Appl Stat , vol.54 , Issue.2 , pp. 367-384
    • Sidik, K.1    Jonkman, J.N.2
  • 9
    • 84890913931 scopus 로고
    • Maximum likelihood approaches to variance component estimation and to related problems
    • Harville DA. Maximum likelihood approaches to variance component estimation and to related problems. J Am Stat Assoc. 1977;72(358):320-338. https://doi.org/10.2307/2286796
    • (1977) J Am Stat Assoc , vol.72 , Issue.358 , pp. 320-338
    • Harville, D.A.1
  • 10
    • 84938698393 scopus 로고    scopus 로고
    • An empirical comparison of heterogeneity variance estimators in 12,894 meta-analyses
    • Langan D, Higgins JPT, Simmonds M. An empirical comparison of heterogeneity variance estimators in 12,894 meta-analyses. Res Syn Meth. 2015;6(2):195-205. https://doi.org/10.1002/jrsm.1140
    • (2015) Res Syn Meth , vol.6 , Issue.2 , pp. 195-205
    • Langan, D.1    Higgins, J.P.T.2    Simmonds, M.3
  • 11
    • 84963649819 scopus 로고    scopus 로고
    • Comparative performance of heterogeneity variance estimators in meta-analysis: a review of simulation studies
    • Langan D, Higgins JPT, Simmonds M. Comparative performance of heterogeneity variance estimators in meta-analysis: a review of simulation studies. Res Syn Meth. 2016;8(2):181-198. https://doi.org/10.1002/jrsm.1198
    • (2016) Res Syn Meth , vol.8 , Issue.2 , pp. 181-198
    • Langan, D.1    Higgins, J.P.T.2    Simmonds, M.3
  • 12
    • 84907013218 scopus 로고    scopus 로고
    • On estimating residual heterogeneity in random-effects meta-regression: a comparative study
    • Panityakul T, Bumrungsup C, Knapp G. On estimating residual heterogeneity in random-effects meta-regression: a comparative study. J Stat Theory Appl. 2013;12(3):253-265.
    • (2013) J Stat Theory Appl , vol.12 , Issue.3 , pp. 253-265
    • Panityakul, T.1    Bumrungsup, C.2    Knapp, G.3
  • 13
    • 27544512687 scopus 로고    scopus 로고
    • Bias and efficiency of meta-analytic variance estimators in the random-effects model
    • Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat. 2005;30(3):261-293. https://doi.org/10.3102/10769986030003261
    • (2005) J Educ Behav Stat , vol.30 , Issue.3 , pp. 261-293
    • Viechtbauer, W.1
  • 14
    • 0347308489 scopus 로고    scopus 로고
    • Restricted maximum likelihood estimation of a common mean and the Mandel-Paule algorithm
    • Rukhin AL, Biggerstaff BJ, Vangel MG. Restricted maximum likelihood estimation of a common mean and the Mandel-Paule algorithm. J Stat Plan Inference. 2000;83(2):319-330. https://doi.org/10.1016/S0378-3758(99)00098-1
    • (2000) J Stat Plan Inference , vol.83 , Issue.2 , pp. 319-330
    • Rukhin, A.L.1    Biggerstaff, B.J.2    Vangel, M.G.3
  • 15
    • 84864386271 scopus 로고    scopus 로고
    • Meta-analysis of rare binary adverse event data
    • Bhaumik DK, Amatya A, Normand SLT, et al. Meta-analysis of rare binary adverse event data. J Am Stat Assoc. 2012;107(498):555-567.
    • (2012) J Am Stat Assoc , vol.107 , Issue.498 , pp. 555-567
    • Bhaumik, D.K.1    Amatya, A.2    Normand, S.L.T.3
  • 16
    • 0042926567 scopus 로고    scopus 로고
    • Improved tests for a random effects meta-regression with a single covariate
    • Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Stat Med. 2003;22(17):2693-2710.
    • (2003) Stat Med , vol.22 , Issue.17 , pp. 2693-2710
    • Knapp, G.1    Hartung, J.2
  • 17
    • 43049146541 scopus 로고    scopus 로고
    • Confidence intervals for the overall effect size in random-effects meta-analysis
    • Sanchez-Meca J, Marín-Martínez F. Confidence intervals for the overall effect size in random-effects meta-analysis. Psychol Methods. 2008;13(1):31-48.
    • (2008) Psychol Methods , vol.13 , Issue.1 , pp. 31-48
    • Sanchez-Meca, J.1    Marín-Martínez, F.2
  • 18
    • 84880850709 scopus 로고    scopus 로고
    • A re-analysis of the Cochrane library data: the dangers of unobserved heterogeneity in meta-analyses
    • Kontopantelis E, Springate DA, Reeves D. A re-analysis of the Cochrane library data: the dangers of unobserved heterogeneity in meta-analyses. PLoS One. 2013;8(7):e69930.
    • (2013) PLoS One , vol.8 , Issue.7
    • Kontopantelis, E.1    Springate, D.A.2    Reeves, D.3
  • 19
    • 84884702463 scopus 로고    scopus 로고
    • Avoiding zero between-study variance estimates in random-effects meta-analysis
    • Chung Y, Rabe-Hesketh S, Choi IH. Avoiding zero between-study variance estimates in random-effects meta-analysis. Stat Med. 2013;32(23):4071-4089.
    • (2013) Stat Med , vol.32 , Issue.23 , pp. 4071-4089
    • Chung, Y.1    Rabe-Hesketh, S.2    Choi, I.H.3
  • 21
    • 0029874040 scopus 로고    scopus 로고
    • A likelihood approach to meta-analysis with random effects
    • Hardy RJ, Thompson SG. A likelihood approach to meta-analysis with random effects. Stat Med. 1996;15(6):619-629.
    • (1996) Stat Med , vol.15 , Issue.6 , pp. 619-629
    • Hardy, R.J.1    Thompson, S.G.2
  • 22
    • 84950432453 scopus 로고
    • Parametric empirical Bayes inference: theory and applications
    • Morris CN. Parametric empirical Bayes inference: theory and applications. J Am Stat Assoc. 1983;78(381):47-55.
    • (1983) J Am Stat Assoc , vol.78 , Issue.381 , pp. 47-55
    • Morris, C.N.1
  • 23
    • 33845571913 scopus 로고    scopus 로고
    • Random-effects model for meta-analysis of clinical trials: an update
    • DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28(2):105-114. https://doi.org/10.1016/j.cct.2006.04.004
    • (2007) Contemp Clin Trials , vol.28 , Issue.2 , pp. 105-114
    • DerSimonian, R.1    Kacker, R.2
  • 24
    • 79953689306 scopus 로고    scopus 로고
    • Quantifying, displaying and accounting for heterogeneity in the meta-analysis of RCTs using standard and generalised Q statistics
    • Bowden J, Tierney JF, Copas AJ, Burdett S. Quantifying, displaying and accounting for heterogeneity in the meta-analysis of RCTs using standard and generalised Q statistics. BMC Med Res Methodol. 2011;11(1):41.
    • (2011) BMC Med Res Methodol , vol.11 , Issue.1 , pp. 41
    • Bowden, J.1    Tierney, J.F.2    Copas, A.J.3    Burdett, S.4
  • 25
    • 84907015020 scopus 로고    scopus 로고
    • Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models
    • Jackson D, Turner R, Rhodes K, Viechtbauer W. Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models. BMC Med Res Methodol. 2014;14(1):103.
    • (2014) BMC Med Res Methodol , vol.14 , Issue.1 , pp. 103
    • Jackson, D.1    Turner, R.2    Rhodes, K.3    Viechtbauer, W.4
  • 26
    • 84878221299 scopus 로고    scopus 로고
    • Estimating heterogeneity variance in meta-analysis
    • Rukhin AL. Estimating heterogeneity variance in meta-analysis. J R Stat Soc Series B Stat Methodology. 2013;75(3):451-469.
    • (2013) J R Stat Soc Series B Stat Methodology , vol.75 , Issue.3 , pp. 451-469
    • Rukhin, A.L.1
  • 27
    • 77958110812 scopus 로고    scopus 로고
    • Conducting meta-analyses in R with the metaphor package
    • Viechtbauer W. Conducting meta-analyses in R with the metaphor package. J Stat Softw. 2010;36(3):1-48.
    • (2010) J Stat Softw , vol.36 , Issue.3 , pp. 1-48
    • Viechtbauer, W.1
  • 28
    • 0032886748 scopus 로고    scopus 로고
    • Valid inference in random-effects meta-analysis
    • Follmann DA, Proschan MA. Valid inference in random-effects meta-analysis. Biometrics. 1999;55(3):732-737.
    • (1999) Biometrics , vol.55 , Issue.3 , pp. 732-737
    • Follmann, D.A.1    Proschan, M.A.2
  • 29
    • 0035977414 scopus 로고    scopus 로고
    • A refined method for the meta-analysis of controlled clinical trials with binary outcome
    • Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med. 2001;20(24):3875-3889.
    • (2001) Stat Med , vol.20 , Issue.24 , pp. 3875-3889
    • Hartung, J.1    Knapp, G.2
  • 30
    • 0037110527 scopus 로고    scopus 로고
    • A simple confidence interval for meta-analysis
    • Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Stat Med. 2002;21(21):3153-3159. https://doi.org/10.1002/sim.1262
    • (2002) Stat Med , vol.21 , Issue.21 , pp. 3153-3159
    • Sidik, K.1    Jonkman, J.N.2
  • 31
    • 84959387470 scopus 로고    scopus 로고
    • Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis
    • Wiksten A, Rücker G, Schwarzer G. Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis. Stat Med. 2016;35(15):2503-2515. https://doi.org/10.1002/sim.6879
    • (2016) Stat Med , vol.35 , Issue.15 , pp. 2503-2515
    • Wiksten, A.1    Rücker, G.2    Schwarzer, G.3
  • 32
    • 0037098199 scopus 로고    scopus 로고
    • Quantifying heterogeneity in a meta-analysis
    • Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539-1558. https://doi.org/10.1002/sim.1186
    • (2002) Stat Med , vol.21 , Issue.11 , pp. 1539-1558
    • Higgins, J.P.T.1    Thompson, S.G.2
  • 34
    • 0029612242 scopus 로고
    • Bayesian approaches to random-effects meta-analysis: a comparative study
    • Smith TC, Spiegelhalter DJ, Thomas A. Bayesian approaches to random-effects meta-analysis: a comparative study. Stat Med. 1995;14(24):2685-2699.
    • (1995) Stat Med , vol.14 , Issue.24 , pp. 2685-2699
    • Smith, T.C.1    Spiegelhalter, D.J.2    Thomas, A.3
  • 35
    • 7944222428 scopus 로고    scopus 로고
    • Some general points in estimating heterogeneity variance with the DerSimonian-Laird estimator
    • Böhning D, Malzahn U, Dietz E, Schlattmann P, Viwatwongkasem C, Biggeri A. Some general points in estimating heterogeneity variance with the DerSimonian-Laird estimator. Biostatistics. 2002;3(4):445-457. https://doi.org/10.1093/biostatistics/3.4.445
    • (2002) Biostatistics , vol.3 , Issue.4 , pp. 445-457
    • Böhning, D.1    Malzahn, U.2    Dietz, E.3    Schlattmann, P.4    Viwatwongkasem, C.5    Biggeri, A.6
  • 36
    • 0036205370 scopus 로고    scopus 로고
    • Being sceptical about meta-analyses: a Bayesian perspective on magnesium trials in myocardial infarction
    • Higgins JPT, Spiegelhalter DJ. Being sceptical about meta-analyses: a Bayesian perspective on magnesium trials in myocardial infarction. Int J Epidemiol. 2002;31(1):96-104. https://doi.org/10.1093/ije/31.1.96
    • (2002) Int J Epidemiol , vol.31 , Issue.1 , pp. 96-104
    • Higgins, J.P.T.1    Spiegelhalter, D.J.2
  • 37
    • 77957672873 scopus 로고    scopus 로고
    • metaan: random-effects meta-analysis
    • Kontopantelis E, Reeves D. metaan: random-effects meta-analysis. Stata J. 2010;10(3):395.
    • (2010) Stata J , vol.10 , Issue.3 , pp. 395
    • Kontopantelis, E.1    Reeves, D.2
  • 38
    • 84863975528 scopus 로고    scopus 로고
    • Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a simulation study
    • Kontopantelis E, Reeves D. Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a simulation study. Stat Methods Med Res. 2012;21(4):409-426.
    • (2012) Stat Methods Med Res , vol.21 , Issue.4 , pp. 409-426
    • Kontopantelis, E.1    Reeves, D.2
  • 39
    • 84870020421 scopus 로고    scopus 로고
    • Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a comparison between DerSimonian-Laird and restricted maximum likelihood
    • Kontopantelis E, Reeves D. Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a comparison between DerSimonian-Laird and restricted maximum likelihood. Stat Methods Med Res. 2012;21(6):657-659.
    • (2012) Stat Methods Med Res , vol.21 , Issue.6 , pp. 657-659
    • Kontopantelis, E.1    Reeves, D.2
  • 40
    • 33846260745 scopus 로고    scopus 로고
    • Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events
    • Bradburn MJ, Deeks JJ, Berlin JA, Russell Localio A. Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Stat Med. 2007;26(1):53-77.
    • (2007) Stat Med , vol.26 , Issue.1 , pp. 53-77
    • Bradburn, M.J.1    Deeks, J.J.2    Berlin, J.A.3    Russell Localio, A.4
  • 41
    • 84899478410 scopus 로고    scopus 로고
    • The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method
    • IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014;14(1):25.
    • (2014) BMC Med Res Methodol , vol.14 , Issue.1 , pp. 25
    • IntHout, J.1    Ioannidis, J.P.2    Borm, G.F.3
  • 42
    • 78649676690 scopus 로고    scopus 로고
    • Confidence intervals for random effects meta-analysis and robustness to publication bias
    • Henmi M, Copas JB. Confidence intervals for random effects meta-analysis and robustness to publication bias. Stat Med. 2010;29(29):2969-2983. https://doi.org/10.1002/sim.4029
    • (2010) Stat Med , vol.29 , Issue.29 , pp. 2969-2983
    • Henmi, M.1    Copas, J.B.2
  • 43
    • 84988478557 scopus 로고    scopus 로고
    • Random-effects meta-analysis of inconsistent effects: a time for change
    • Cornell JE. Random-effects meta-analysis of inconsistent effects: a time for change. Ann Intern Med. 2014;160(4):267-270. https://doi.org/10.7326/M13-2886
    • (2014) Ann Intern Med , vol.160 , Issue.4 , pp. 267-270
    • Cornell, J.E.1
  • 44
    • 2342661718 scopus 로고    scopus 로고
    • What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data
    • Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med. 2004;23(9):1351-1375. https://doi.org/10.1002/sim.1761
    • (2004) Stat Med , vol.23 , Issue.9 , pp. 1351-1375
    • Sweeting, M.J.1    Sutton, A.J.2    Lambert, P.C.3
  • 45
    • 78649672029 scopus 로고    scopus 로고
    • Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data
    • Stijnen T, Hamza TH, Ozdemir P. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med. 2010;29(29):3046-3067.
    • (2010) Stat Med , vol.29 , Issue.29 , pp. 3046-3067
    • Stijnen, T.1    Hamza, T.H.2    Ozdemir, P.3
  • 46
    • 84995794417 scopus 로고    scopus 로고
    • A general framework for the use of logistic regression models in meta-analysis
    • Simmonds M, Higgins JPT. A general framework for the use of logistic regression models in meta-analysis. Stat Methods Med Res. 2016;25(6):2858-2877.
    • (2016) Stat Methods Med Res , vol.25 , Issue.6 , pp. 2858-2877
    • Simmonds, M.1    Higgins, J.P.T.2
  • 47
    • 85042931759 scopus 로고    scopus 로고
    • A comparison of 7 random-effects models for meta-analyses that estimate the summary odds ratio
    • (in press)
    • Jackson D, Law M, Stijnen T, Viechtbauer W, White IR. A comparison of 7 random-effects models for meta-analyses that estimate the summary odds ratio. Stat Med. 2018 (in press). doi: https://doi.org/10.1002/sim.7588;37(7):1059-1085.
    • (2018) Stat Med , vol.37 , Issue.7 , pp. 1059-1085
    • Jackson, D.1    Law, M.2    Stijnen, T.3    Viechtbauer, W.4    White, I.R.5
  • 48
    • 84963850958 scopus 로고    scopus 로고
    • Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies
    • Röver C, Knapp G, Friede T. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies. BMC Med Res Methodol. 2015;15(1):99.
    • (2015) BMC Med Res Methodol , vol.15 , Issue.1 , pp. 99
    • Röver, C.1    Knapp, G.2    Friede, T.3
  • 49
    • 82055175725 scopus 로고    scopus 로고
    • Characteristics of meta-analyses and their component studies in the Cochrane Database of Systematic Reviews: a cross-sectional, descriptive analysis
    • Davey J, Turner RM, Clarke MJ, Higgins JPT. Characteristics of meta-analyses and their component studies in the Cochrane Database of Systematic Reviews: a cross-sectional, descriptive analysis. BMC Med Res Methodol. 2011;11(1):160. https://doi.org/10.1186/1471-2288-11-160
    • (2011) BMC Med Res Methodol , vol.11 , Issue.1 , pp. 160
    • Davey, J.1    Turner, R.M.2    Clarke, M.J.3    Higgins, J.P.T.4
  • 50
    • 84955329833 scopus 로고    scopus 로고
    • A decade of individual participant data meta-analyses: a review of current practice
    • Simmonds M, Stewart G, Stewart L. A decade of individual participant data meta-analyses: a review of current practice. Contemp Clin Trials. 2015;45:76-83.
    • (2015) Contemp Clin Trials , vol.45 , pp. 76-83
    • Simmonds, M.1    Stewart, G.2    Stewart, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.